Выбрать главу

Π

μν

=

q

ν

Π

μν

= 0.

(all)aa'

(all)aa'

(5.10)

Проверку унитарности мы оставляем читателю в качестве простого упражнения. Далее в тексте индекс all мы опускаем и рассматриваем лагранжиан КХД, записанный в ковариантной (лоренцевой) калибровке, т.е.

ξ

=

{

i

q

D

q-m

 

q

q

}

 -

1

(D×B)

2

 -

λ

(∂B)

q

4

 

2

q

QCD

 

+

(∂

 

ω

 

)(δ

 

μ

- gƒ

 

B

μ

 

,

μ

a

ab

 

abc

c

b

ξ

=

1-1/λ

(5.11)

Начиная со следующего раздела, в обозначении лагранжиана ℒ индекс КХД мы также будем опускать.

2. Физические калибровки

Появление ду́хов вызвано тем, что оператор проекции на физические состояния P не коммутирует с лагранжианом КХД, записанным в лоренцевой калибровке. Может оказаться, что такой проблемы не возникнет, если выбрать калибровку, в которой все глюонные состояния соответствуют физическим, так что все гильбертово пространство полей является физическим. Известно, что уже на уровне квантовой электродинамики невозможно одновременно удовлетворить условиям положительной энергии, локальности и явной лоренц-инвариантности. Поэтому возникает необходимость использования нековариантной калибровки. Одной из нековариантных калибровок является кулоновская калибровка8), однако она тоже не свободна от ду́хов. Необходимость введения ду́хов исчезает, если потребовать выполнения соотношений

8 Более того, кулоновская калибровка вносит дополнительные усложнения. Формулировка КХД в кулоновской калибровке изложена в статье [69].

n⋅B=0,

n

2

≤0.

(5.12)

Случай пространственноподобного вектора n(n2<0) соответствует аксиальным калибровкам9), а случай светоподобного вектора n(n2=0) — светоподобной калибровке10). Так как вектор n является по отношению к задаче внешним его введение нарушает явную лоренц-инвариантность промежуточных вычислений, хотя, конечно, калибровочная инвариантность обеспечивает независимость окончательных результатов для физических величин от вектора n, а следовательно, и их лоренц-инвариантность.

9 Аксиальные калибровки обсуждаются в работе [185]. См. также цитируемую там литературу.

10 См., например, работу [247] и цитируемую там литературу.

Начнем с рассмотрения аксиальной калибровки. Лагранжиан, записанный в аксиальной калибровке, имеет вид

 

{

i

q

D

q - m

 

q

q

}

 -

1

(D×B)

2

-

1

(n⋅B)

2

.

n

q

4

 

 

 

q

(5.13)

В дальнейшем по параметру β подразумевается предельный переход β→0, так что условие (5.12) представляет собой операторное соотношение, выполненное на всем гильбертовом пространстве. Пропагатор, соответствующий лагранжиану (5.13), записывается в виде

i

-g

μν

-k

μ

k

ν

(n

2

+βk

2

)/(k⋅n)

2

+ (n

μ

k

ν

+n

ν

k

μ

)(n⋅k)

-1

;

k

2

+i0

(5.14)

в пределе β→0 он принимает вид

i

-g

μν

-n

2

(k

μ

k

ν

/(k⋅k)

2

) + (n

μ

k

ν

+n

ν

k

μ

)/(k⋅n)

.

k

2

+i0

(5.15)

Обобщение теории на аксиальные калибровки нетривиально; детальное изложение этой процедуры заинтересованный читатель найдет в работе [185]. Все вычисления в аксиальных калибровках мы будем проводить только на однопетлевом уровне, на котором трудностей не возникает.

При рассмотрении светоподобных калибровок удобно ввести так называемые "нулевые" координаты, определяемые для любого вектора v в виде

v

±

=

1

2

(v

0

±v

3

),

v

v1

v2

; v

a

=v

±

или v

i

(i=1,2).

Метрика определяется следующим образом:

g

+-

=g

-+

=1,

g

++

=g

--

=0,

g

ij

=-δ

ij

,

i,j=1,2.

Отметим, что выполняются соотношения

v⋅w=v

+

w

-

+v

-

w

+

-

vw

=v

a

w

a

.

Для светоподобного вектора u "нулевые" координаты можно выбрать в виде u=0, u-=0, u+=1. Тогда дополнительное условие u⋅B=0 можно записать в виде

B

a

(x)=0.

-

(5.16)

Пропагатор в светоподобной калибровке определяется соотношением

i

P

μν

(k,u)

 = i

-g

μν

+(u

μ

ν

+u

ν

k

μ