Необходимо отметить, что все проведенные выше выкладки выполнены чисто формальным образом. Так, например, в процессе вычислений мы намеренно закрывали глаза на то, что пропагаторы представляют собой сингулярные функции. Чтобы корректно установить равенства между величинами, необходимо проверить, что к ним можно применять процедуру перенормировок (см. § 7 — 9). В самом деле, некоторые формальные равенства при этом нарушаются; пример такого нарушения приведен в § 33. Однако даже сохраняющиеся при процедуре перенормировок равенства иногда приходится интерпретировать по-новому. Это относится, например, к уравнению (6.10), так как фигурирующий в нем калибровочный параметр заменяется на перенормированный, в результате чего смысл его несколько изменяется.
§ 7. Размерная регуляризация
Как мы видели в примере, приведенном в § 5, некоторые из амплитуд рассеяния оказываются расходящимися. Это происходит из-за сингулярного характера полевых операторов. Легко найти, что расходимость интеграла по dk в (5-46) при больших импульсах k обусловлена тем, что в координатном пространстве в него входят произведения полевых операторов, взятых в одной пространственно-временной точке. Поэтому, чтобы обсуждать квантовую хромодинамику (или любую другую локальную релятивистскую теорию поля), необходимо появляющимся при вычислении фейнмановских диаграмм интегралам придать математически строгий смысл. Эта процедура носит название регуляризации и сводится к замене лагранжиана ℒ регуляризованным лагранжианом ℒε, приводящим при вычислении фейнмановских диаграмм к конечным ответам и в пределе ε→0 переходящим в некотором смысле в исходный лагранжиан ℒ, т.е. ℒε→ℒ. Из классических работ Бора и Розенфельда [46, 47] известно, что полевые операторы по своей природе сингулярны, и, следовательно, любая процедура регуляризации с неизбежностью нарушает некоторые физические особенности теории. Например, регуляризация Паули — Вилларса в случае неабелевой теории нарушает свойства эрмитовости и калибровочной инвариантности, решеточная регуляризация нарушает инвариантность по отношению к преобразованиям Пуанкаре и т.д. Конечно, в пределе ε→0 эти свойства восстанавливаются (если мы были достаточно осторожны!). Свойства калибровочной и лоренц-инвариантности особенно важны в случае КХД, поэтому в дальнейшем мы будем использовать размерную регуляризацию, нарушающую лишь масштабную инвариантность. Этот метод, подробно развитый в работах т’Хофта и Велтмана [253] (см. также [48]), связан с так называемой аналитической регуляризацией [49, 233]. Он состоит в том, что все вычисления проводят в пространстве размерности D=4-ε, в конечном же ответе переходят к физическому пределу при ε→0. При этом расходимости проявляются в виде полюсов по 1/ε. Насколько известно автору, математически строгого определения объекта в пространстве произвольной размерности D не существует, кроме случая, когда она равна положительному целому числу. Но этому не следует придавать слишком большого значения; нам необходимы лишь интерполяционные формулы, обладающие свойством калибровочной и пуанкаре-инвариантности и пригодные для вычисления фейнмановских интегралов. Такие интерполяционные формулы можно получить поэтапно. Рассмотрим сначала сходящийся интеграл вида (2π)D∫dDkƒ(k2), где функция ƒ, как правило, имеет вид ƒ(k2)=(k2)r(k2-a2)-m с целочисленными значениями параметров r и m, а величины dDk и k2 определяются выражениями dDk=dk0dk1…dkD-1, k2=(k0)2-(k1)2-…-(kD-1)2. Так как функция ƒ аналитична в плоскости комплексного переменного k0, контур интегрирования можно повернуть на 90° и перейти от контура (-∞,+∞), к контуру (-i∞,+i∞), т.е. совершить так называемый виковский поворот. Затем можно восстановить интегрирование по прямой (-∞,+∞), определив новую переменную k0→kD=ik0. Таким образом, получаем обычный евклидов интеграл в пространстве размерности D
i
∫
+∞
dk
1
…
∫
+∞
dk
D
ƒ(-k
2
),
k
2
≡
(k
1
)
2
+…+
(k
D
)
2
≡
|k
E
|
2
.
-∞
2π
-∞
2π
E
E
Если элемент объема в D-мерном пространстве обозначить через dDkE=dk1…dkD, то, вводя полярные координаты, его можно записать в виде dDkE=d|kE|⋅|kE|D-1dΩD . Используя формулу ∫dΩD=2πD/2/Γ(D/2), получаем наконец
∫
d
D
k
ƒ=
i
∫
∞
d|k
E
|⋅|k
E
|
D-1
ƒ(-|k
E
|
2
).
(2π)
D
(2π)
D/2
Γ(D/2)
0
Все приведенные выше выкладки справедливы только для целых положительных значений размерности D. Но последнюю формулу можно использовать для определения интеграла по пространству произвольной (даже комплексной) размерности D и произвольных значений параметров r и m.
Рассмотрим далее интеграл от полиномиального по компонентам импульса kμ выражения, умноженного на функцию ƒ(k2); этот интеграл можно свести к ранее изученному случаю, записывая его, например, в виде
∫
d
D
kƒ(k
2
)k
μ
k
ν
=
g
μν
∫
d
D
kƒ(k
2
)k
2
.
D
Наконец, интеграл общего вида сводится к только что изученным интегралам разложением подынтегрального выражения в ряд по степеням аргумента kμ. Таким способом можно вычислить интегралы, приведенные в приложении Б (а также многие другие), в пространстве произвольной размерности D. Например, нетрудно убедиться в справедливости результата
∫
d
D
k
-
(k
2
)
r
=
i
(-1)
r-m
⋅
Γ(r+D/2)Γ(m-r-D/2)
(2π)
D
(k
2
-a
2
)
m
(4π)
D/2
Γ(D/2)Γ(m)(a
2
)
m-r-D/2