Выбрать главу

μν

=Z

-1

D

μν

 .

R tr;ab

B

u tr;ab

Из уравнений (5.9), (9.20). и (9.21) следует равенство

1-Π

div

=

 

1+

g

2

{

10C

A

 -

8T

F

n

ƒ

}

N

ε

.

32π

2

3

3

Следовательно, в рамках схемы MS в калибровке Ферми - Фейнмана для перенормировочного множителя получаем выражение

Z

B

=1+

 

α

g

{

10C

A

 -

8T

F

n

ƒ

}

N

ε

.

3

3

(9.23)

В произвольной калибровке перенормировочный множитель ZB был вычислен в работах [160, 218]. Соответствующий коэффициент C(1) равен

C

(1)

 =

1

{

10+3ξ-

4n

ƒ

}

.

2

3

(9.24)

Опуская вычисления, приведем лишь конечный результат для перенормировочного множителя Zλ17)

17) См., например, работу [222] и цитируемую там литературу. Тождества Славнова-Тейлора, доказанные в § 6, обеспечивают выполнение равенства ZB=Zλ во всех порядках теории возмущений

C

(1)

=C

(1)

λξ

(9.25)

Следует отметить, что в калибровке Ландау параметр ξ в однопетлевом приближении не перенормируется. В действительности, как показано в § 6, тождества Славнова — Тейлора обеспечивают справедливость этого утверждения во всех порядках теории возмущений.

Рис. 7. Вершина кварк-глюонного взаимодействия.

В заключение этого параграфа вычислим перенормировочный множитель Zg. Для этого используем вершину ggB. Выбирая обозначения 4-импульсов в соответствии с рис. 7, можно записать выражение для этой вершины во втором порядке теории возмущений в виде (ср. с (9.7))

V

μ

=igγ

μ

t

a

+iΓ

(2)μ

 ,

uij,a

 

ij

uij,a

(9.26 а)

где

Γ

(2)μ

(p,p')={Γ

(b)

(c)

}

μ

 .

uij,a

 

 

uij,a

(9.26 б)

Величины Γ(b) и Γ(c) обозначают вклады от диаграмм рис. 7, б и в соответственно. Диаграмма рис. 7, а приводит к первому члену igγt в формуле (9.26 а). Из рассмотренных выше примеров очевидно, что массы кварков не играют pоли в выражениях для перенормировочных множителей Z (за исключением, конечно, множителя Zm), поэтому можно упростить вычисления, положив m=0. При этом следует учитывать только расходящиеся части вершин Γ. Тогда в калибровке Ферми — Фейнмана для рассматриваемой вершины имеем

(b)μ

uij,a

div

=

 

ig

d

D

×

γβ[(2k-q)μgαβ-(k+q)βgμα+2(q-k)αgμβ](p+kα

[(p+k)2+i0][(k-q)2+i0](k2+i0)

C

a

ij

div

=

 

igC

a

γ

μ

 

lim

η→0

d

D

2(2-D)/D-2

ij

 

(k

2

-iη)

2

div

=

 

g

3N

ε

C

a

ij

γ

2

16π

2

(9.27 а)

Здесь использованы обозначения

d

D

d

D

k

 ν

4-D

,

(2π)

D

0

C

a

ij

-g

2

t

b

t

c

ƒ

abc

=

1

g

2

[t

b

,t

c

]

ij

ƒ

bca

jl

li

 

2

=

g

2

i

 

C

A

t

a

 =

3

 it

a

g

2

.

2

ij

2

ij

При выводе последнего выражения использовано свойство антисимметрии константы ƒ по отношению к перестановке индексов, благодаря которому можно заменить tbtc на коммутатор ½[tb, tс]. Аналогично получаем выражение для вклада, возникающего от диаграммы рис. 7, в:

(c)μ

uij,a

div

=

 

-i

2

g

d

D

γ

β

(

p

+

k

μ

(

p

+

k

α

g

αβ

C

'a

[(p+k)

2

+i0][(p'+k)

2

+i0](k

2

+i0)

ij

div

=