m
2
a
≡
m
2
Pa
≈ε.
(37.4)
Это было показано в § 31 (уравнения (31.4) и (31.5)). Следовательно, в этом пределе выражение (37.3) при α=a имеет полюс в точке q²=0. Точнее говоря, это означает, что в киральном пределе, т.е. при нулевых значениях масс кварков, справедливо равенство
lim
q→0
∫
𝑑
4
x
e
iq⋅x
∂
μ
⟨vac|TA
μ
α
(x)
∏
j
N
j
(x)
j
|vac⟩
≈(constant)q
μ
1
q²
.
(37.5)
Если пренебречь аномалиями, то вывод формулы (37.4) можно повторить и для случая α=0, откуда мы получили бы, что частица U(1) также в киральном пределе имеет нулевую массу [145]. В действительности это утверждение более точно сформулировано в работе [259], где получено неравенство m0≤√n. Это неравенство свидетельствует о неправильности всех наших построений, так как для группы SU(2) выполняется соотношение mη≫√2mπ . Для группы SU(2) масса mη' также нарушает это ограничение. В дополнение к этому было доказано [50], что при таких условиях распад η→3π и запрещен, что также противоречит эксперименту. Следовательно, нужно предположить, что выражение (37.3) для случая α=0 в пределе ε→0 остается регулярным. Если бы мы могли доказать это, мы бы решили проблему U(1). Этот вопрос подробнее обсуждается несколько ниже; здесь же мы просто предположим, что U(1)-бозонов не существует, не задаваясь вопросом, можно ли доказать это в рамках КХД. Совершенно очевидно, что, если бы не было аномалии, это предположение было бы противоречивым. Поэтому, возможно, полезно проследить, к каким результатам приводит одновременное отсутствие голдстоуновских бозонов P0 и наличие аномалии в токе A0. В решении этого вопроса мы следуем прекрасному обзору [82].
Определенный формулой (37.1) ток A0 инвариантен по отношению к калибровочным преобразованиям, но в киральном пределе не инвариантен по отношению к преобразованиям группы U(1) вследствие аномалии, содержащейся в выражении (37.2). Как было показано для абелевых групп в работе [7], а для общего случая в работе [25], можно построить другой, инвариантный относительно преобразований группы U(1) ток:
Â
μ
0
=
A
μ
0
-2nK
μ
,
(37.6)
где введен чисто глюонный ток
K
μ
=
2g²
32π²
ε
μνρσ
∑
B
aν
⎧
⎨
⎩
∂
ρ
B
aσ
+
1
3
ƒ
abc
B
bρ
B
cσ
⎫
⎬
⎭
.
(37.7)
В правильности этого выражения легко убедиться, заметив, что
∂
μ
K
μ
=
g²
32π²
G
̃
G
(37.8)
так что из формулы (37.2) в киральном пределе получаем
∂
μ
Â
μ
0
=0.
(37.9)
Следует отметить, что ток K, удовлетворяющий уравнению (37.8), определен неоднозначно, так как он зависит от используемой калибровки. В принципе выражение (37.6) записано для "голых" величин, но всегда можно провести перенормировку таким образом, что оно останется справедливым и для "одетых" величин. Конечно, причина состоит в том, что аномалия не перенормируется.
Генератором преобразований U(1) должен быть сохраняющийся ток, а именно ток Â0 . Следовательно, можно определить киралъностъ χ соотношением
δ(x
0
-y
0
)
⎡
⎣
Â
0
0
(x),N
j
(y)
⎤
⎦
=
-χ
j
δ(x-y)N
j
(y),
(37.10а)
или в интегральном виде
⎡
⎣
Q
̂
0
,N
j
=-χ
j
N
j
,
⎤
⎦
(37.10б)
где U(1)-киральный заряд имеет вид
Q
̂
0
=
∫
𝑑x
⃗
Â
0
0
(x).
(37.11)
Так как ток Â удовлетворяет уравнению (37.9), киральный заряд Q̂0 не зависит от времени, и, следовательно, можно ожидать, что не только соотношение (37.10) имеет смысл, но и числа χj не изменяются в процессе перенормировки. Чтобы доказать это более формально, рассмотрим вакуумное среднее
⟨vac|TÂ
μ
0
(x)
∏
j
N
j
(x
j
)|vac⟩,
и применим к нему оператор дифференцирования ∂μ . Мы получим тождество Уорда
∂
μ
⟨vac|TÂ
μ
0
(x)
∏
j
N
j
(x
j
)|vac⟩,
=-
⎧
⎨
⎩
∑
l
χ
l
δ(x-x
l
)
⎫
⎬
⎭
⟨vac|T
∏
j
N
j
(x
j
)|vac⟩;
(37.12)
при выводе мы использовали соотношения (37.9) и (37.10а). Так как ток Â (частично) сохраняется, то, как мы уже знаем, он не изменяется в процессе перенормировок, и величина χ также должна обладать этими свойствами. В § 38 будет показано, что соотношение (37.12) и отсутствие U(1)-бозонов приводят к довольно специфическим свойствам вакуума квантовой хромодинамики.
§ 38. Параметр θ, вакуум КХД, эффект безмассовых кварков и решение проблемы U(1)