Выбрать главу

Энергия промежуточных состояний не совпадает с энергией начального и конечного состояний; тем не менее закон сохранения энергии здесь не нарушается, поскольку система пребывает в промежуточном состоянии лишь кратковременно. Величина вклада в общую сумму в этом случае убывает обратно пропорционально разности энергий. Об этих промежуточных состояниях мало что можно сказать. Они возникают лишь при рассмотрении потенциала 𝑉 как возмущения системы с гамильтонианом 𝐻, когда реальные состояния системы с гамильтонианом 𝐻+𝑉 выражаются только лишь через состояния системы с гамильтонианом 𝐻. Если в задаче используется другое разбиение на «возмущённую» и «невозмущённую» системы, то в нашем описании появятся другие формулы и другие промежуточные состояния. Много интересных эффектов возникает в случае, когда потенциал зависит от времени (например, периодически). Большинство из них наблюдалось в микроволновых экспериментах, где в качестве возмущения 𝑉(𝑥,𝑡) применялось слабое и периодически изменяющееся во времени электрическое или магнитное поле.

Задача 6.27. Для потенциалов, периодически изменяющихся во времени, получите ряд теории возмущений до членов второго порядка включительно.

Иногда переход может происходить лишь через два или большее число промежуточных состояний. Анализ таких переходов требует рассмотрения в ряде теории возмущений членов третьего и более высоких порядков.

Задача 6.28. Покажите, что в случае, когда невозможен ни прямой переход, ни переход через одно промежуточное состояние и требуется рассматривать сразу два промежуточных состояния, матричный элемент перехода имеет вид

𝑀

𝑛→𝑚

=

 

𝑘

 

𝑙

𝑉𝑚𝑘𝑉𝑘𝑙𝑉𝑙𝑛

(𝐸𝑚-𝐸𝑘)(𝐸𝑚-𝐸𝑙)

(6.110)

что соответствует члену третьего порядка в разложении теории возмущений.

Задача 6.29. Предположим, что одновременно действуют два возмущения: 𝑉(𝑥,𝑡) и 𝑈(𝑥,𝑡), которые представляют собой, например, некоторую комбинацию постоянного и переменного электрических полей или комбинацию электрического и магнитного полей. Предположим далее, что ни одно из этих возмущений 𝑉 или 𝑈 порознь не может вызвать переход системы из одного состояния в другое. Это становится возможным, лишь когда оба возмущения действуют совместно. Полагая возмущения 𝑉 и 𝑈 не зависящими от времени, покажите, что матричный элемент перехода определяется выражением

𝑀

𝑛→𝑚

=

 

𝑘

𝑉𝑚𝑘𝑈𝑘𝑛+𝑈𝑚𝑘𝑉𝑘𝑛

𝐸𝑚-𝐸𝑘

.

(6.111)

Допустим теперь, что оба потенциала изменяются периодически во времени, но с различными частотами ω1 и ω2. Каков будет в этом случае матричный элемент?

Расчёт сдвига энергии состояния. При вычислении амплитуд переходов мы рассматривали лишь те состояния, у которых 𝑛≠𝑚. Обратимся теперь к случаю, когда 𝑚=𝑛. Рассмотрев члены нулевого и первого порядков в разложении теории возмущений, имеем

λ

𝑚𝑚

=

1-

𝑖

𝑇

 

𝑉

𝑚𝑚

(𝑡)

𝑑𝑡

.

(6.112)

Если 𝑉 не зависит от времени, то λ𝑚𝑛=1-(𝑖/ℏ)𝑉𝑚𝑚𝑇. Что означает этот результат? Можно ожидать, что добавка к основному гамильтониану потенциала 𝑉 приведёт к тому, что энергии всех состояний системы несколько изменятся. Новые значения энергий можно записать как 𝐸𝑚+Δ𝐸𝑚. Зависящая от времени часть волновой функции, описывающей это состояние, будет теперь иметь вид exp[(-𝑖/ℏ)(𝐸𝑚+Δ𝐸𝑚)𝑡] вместо экспоненты exp(-𝑖/ℏ)𝐸𝑚𝑡, которая была раньше.

Вследствие этого за время 𝑇, в течение которого действует возмущающий потенциал, возникает относительная разность фаз, выражаемая экспоненциальным множителем

exp