Так будет и так должно быть в любом случае, когда переменные самого поля (подобно звуковым волнам или давлению) в итоге выражаются только лишь через некоторые комбинации основных механических переменных. Эти основные переменные описывают положения частиц (атомов, электронов, ядер и т. д.), реально образующих среду, в которой возбуждается поле. Например, рассматривая звуковые процессы, мы предполагаем, что уравнение Шрёдингера описывает движение элементов структуры вещества, т.е. атомов в кристалле. Отсюда ясно, что длинноволновые звуковые колебания подчиняются классическим линейным уравнениям поля, в то время как моды оказываются квантованными.
В немногих случаях классические уравнения полей относятся к таким (давно известным) системам, для которых квантовомеханическое исследование на основе уравнения Шрёдингера до сих нор ещё не проделано. Например, применив классическую аналогию, можно получить уравнения для колебательного описания ядерной материи [5]. Превосходная идея о том, что моды поля можно в этом случае рассматривать как квантовые осцилляторы, позволила составить и решить квантовые уравнения. Таких примеров в физике осталось немного.
В квантовой механике имеется и другой тип уравнений, принципиально отличный от всех рассмотренных выше. Примером может служить система линейных уравнений Максвелла для электромагнитного поля. Эта система приводит к волновому уравнению, вполне аналогичному тому, что мы уже вывели для звука, однако в этом случае имеют место совершенно другие поляризационные свойства. Подобно тому, как в трубе органа образуются стоячие волны, электромагнитное поле в замкнутом объёме также имеет, если его рассматривать классически, набор фундаментальных мод. Отсюда естественно предположить, что эти колебания квантованы и каждая мода определяется энергетическим уровнем, превышающим основное состояние системы на Δ𝐸=ℏω𝑛 и т.д. Это — основное предположение квантовой электродинамики. Нельзя сказать, что такой вывод строго следует из уравнения Шрёдингера, потому что электромагнитное поле не понимается здесь в смысле длинноволнового приближения к среде, имеющей атомную структуру. Сегодня мы уже не думаем о какой-то специальной среде для подобного рассмотрения электромагнитного поля, а считаем, что уравнения Максвелла описывают некий фундаментальный закон природы. Мы просто предполагаем, что они квантуются и именно тем простым способом, который описан выше. В гл. 9 обсудим этот вопрос более подробно.
Гипотеза о квантуемости электромагнитных полей согласуется со всеми экспериментами, проделанными до сих пор, хотя здесь имеются и некоторые теоретические трудности. Они связаны с необходимостью распространения этой схемы на моды, соответствующие очень малым длинам волн. При этом возникают различные эффекты, которые приводят к расходимости интегралов, если интегрирование по длинам волн распространяется вплоть до нуля. Подобные же трудности появляются и в рассмотрении вибраций кристалла при попытке исследовать область очень коротких волн, где длины их оказываются сравнимы с межатомными расстояниями, т.е. когда приближение непрерывности уже непригодно. Тогда мы просто отказываемся от такого приближения и этим ограничиваем число нормальных мод в кристалле конечного объёма; в то же время в электродинамике количество мод в любом объёме бесконечно.
Для обозначения мод различных полей обычно используются разные названия. Кванты звука или колебаний в кристалле обычно называются фононами, кванты в теории электромагнитного поля — фотонами, в теории мезонных полей — мезонами и т.д. Даже электроны можно представлять себе в виде возбуждений поля, но это поле будет совсем непохоже на те, которые мы до сих пор рассматривали. Его обычно называют ферми-полем; частицы при этом подчиняются принципу исключения и лагранжиан квантуется не путём перехода к набору гармонических осцилляторов, как это делалось выше, а несколько иным способом. Частицы, возникающие при квантовании полей как моды гармонических осцилляторов, обычно называются бозе-частицами; они подчиняются симметричной статистике (статистике Бозе). Это означает, что если две частицы имеют соответственно волновые числа 𝑖1 и 𝑖2, то для них существует только одно состояние и нет такого состояния, где первой соответствовало бы значение 𝑖2, а второй — значение 𝑖1. Это ясно из того, что наше поле имеет только одно состояние, в котором моды имеют волновые числа 𝑖1 и 𝑖2 и возбуждены до их первых уровней. Такое состояние определяется энергией ℏω1+ℏω2, и здесь бессмысленно задавать вопрос: если поменять эти частицы местами, то какой из них соответствует возбуждение? В гл. 9 обсудим этот вопрос более детально на примере фотонов электромагнитного поля.