Например, для обычного твёрдого тела или жидкости с атомным весом порядка 20 Δ𝑥 при комнатной температуре составляет около 0,1 Å, в то время как межатомные силы проявляются на расстояниях 1-2 Å. Поэтому смещения, превышающие 0,1 Å, не дадут вклада в матрицу плотности, тогда как потенциал останется неизменным до тех пор, пока смещение не достигнет 1-2 Å. Ясно, что в таких условиях классическая статистика будет достаточно точной.
Все загадочные переходы типа твёрдое тело — жидкость — газ лежат в области, где справедлива классическая статистика. Математическое описание подобных процессов упирается в проблему вычисления интеграла по координатам всех атомов от экспоненты 𝑒-β𝑉. На первый взгляд представляется неожиданным, что поразительное разнообразие столь специфических явлений описывается простым интегралом; однако это удивление длится лишь до тех пор, пока не осознай тот факт, что наш интеграл является многократным по огромному числу аргументов. Наш обычный опыт обращения с интегралами, зависящими от одной или самое большее нескольких переменных, ничем не помогает нам при тех качественных различиях, которые возникают при числе аргументов, приближающемся к бесконечности.
Своеобразие задач теории твёрдого тела, теории жидкостей и сжимающихся газов, как и поведение этого многократного интеграла, заключается в том обстоятельстве, что простые описания огромного множества простых систем, объединённых вместе, дают такое обилие явлений. Только воображение может помочь нам понять, каким образом объединение систем приводит к подобным результатам. Грубое качественное рассмотрение легко предсказывает многие из этих эффектов, однако и проблема количественного описания их тоже должна быть заманчива для физика-теоретика.
Существует много важных явлений статистического характера, для описания которых классическое приближение становится неприменимым. Трудности, вызываемые большим числом аргументов интеграции, усугубляются здесь ещё и сложностью квантовомеханических понятий.
Строго говоря, выражение (10.48) открывает для нас несколько больше возможностей по сравнению с классической статистикой. Доказательством этому служит появление постоянной ℏ в коэффициенте перед интегралом. В классической механике функцию распределения можно было получить лишь с точностью до постоянного множителя; поэтому и логарифм её определялся только с точностью до произвольной аддитивной константы. Поэтому в выражении для свободной энергии появлялся член, пропорциональный температуре, а в энтропии — аддитивная константа, называемая иногда химическим потенциалом. Её удалось вычислить лишь после того, как появилась квантовая механика.
§ 3. Квантовомеханические эффекты
Как мы уже упоминали, существуют случаи, когда классическое приближение не является достаточно точным. При этом необходимо учитывать изменение потенциала, возникающее в результате движения частицы вдоль «траектории». В этом параграфе мы рассмотрим подобные влияния в первом приближении теории возмущений.
Вместо того, чтобы в выражении для матрицы плотности (10.43) заменять потенциал постоянной величиной 𝑉(𝑥1), можно было бы попробовать разложить его в ряд Тейлора в точке 𝑥1. Однако проще и точнее было бы проделать это разложение в окрестности средней точки траектории, определяемой равенством
𝑥
=
1
βℏ
βℏ
∫
0
𝑥(𝑢)
𝑑𝑢
,
(10.50)
которая существует для каждой траектории. По этим средним точкам можно интегрировать точно так же, как это делалось в выражении (10.48) по начальным точкам 𝑥1. При этом функция распределения принимает вид
𝑍
=
∫
𝑑
𝑥
𝑥1
∫
𝑥1
⎡
⎢
⎣
exp
⎧
⎪
⎩
-
1
ℏ
⎧
⎨
⎩
𝑚
2
βℏ
∫
0
𝑥̇²
𝑑𝑢
+
βℏ
∫
0
𝑉[𝑥(𝑢)]
𝑑𝑢
⎫
⎬