Выбрать главу

Выражение, аналогичное равенству (10.77), легко записать также и для фермионов, таких, как атомы Не3. Однако в случае жидкого гелия-3 влияние потенциала очень сильно, что не позволяет производить точные количественные расчёты. Причина этого заключена в том, что вклад каждого цикла в сумму по перестановкам будет либо положительным, либо отрицательным в зависимости от чётности числа атомов в цикле. Вклады таких циклов, как, например, 𝐿=51 и 𝐿=52, при низкой температуре приблизительно равны по модулю, а потому при суммировании они почти сокращаются. Приходится вычислять разность близких по величине членов, а это требует очень аккуратного вычисления каждого члена в отдельности. Известно, что знакопеременный ряд больших и медленно убывающих членов очень трудно суммировать, когда у вас нет точной аналитической формулы для числочлена.

Мы могли бы достичь известного прогресса, если бы в математическом описании ферми-системы можно было переходить к сумме положительных членов. Подобные преобразования были испробованы, однако получающиеся при этом выражения для членов ряда оказываются слишком сложны, чтобы оценивать их даже качественно.

Мы видели, что в случае молекул, отстоящих друг от друга на расстояния порядка 1 Å, эффекты обмена (нетождественные перестановки) существенны лишь тогда, когда температура снижается до нескольких градусов Кельвина. Рассмотрим противоположный случай — поведение электронов в каком-нибудь твёрдом металле. Масса электрона намного меньше массы молекулы, и поэтому критическая температура для них оказывается значительно более высокой. При комнатной температуре электроны в металле точно описываются уравнениями, учитывающими лишь обменные эффекты описанных выше циклических перестановок. С этой точки зрения комнатная температура слишком низка для электронов. Доминирующее значение имеют обменные эффекты, т.е. электронный газ является вырожденным. Конечно, электроны взаимодействуют в соответствии с законом Кулона, и это взаимодействие довольно сильное; однако поскольку оно является дальнодействующим, его влияние будет усредняться. Мы можем быть вполне удовлетворены приближением, в котором электроны считаются независимыми объектами, хотя реально каждый из них движется в периодическом потенциальном поле, создаваемом ядрами и соседними электронами. Тем не менее, уподобив электроны в металле идеальному ферми-газу (в котором отсутствует взаимодействие частиц), можно многое узнать об их поведении.

Однако ясно, что мы не сможем изучить это явление достаточно детально, поскольку в таком рассмотрении остаётся загадочной сверхпроводимость, возникающая в металлах при нескольких градусах Кельвина. При сверхпроводимости, по крайней мере у некоторых металлов, играет роль какое-то взаимодействие, связанное с медленными колебаниями атомов; это доказывается тем обстоятельством, что температура перехода для двух различных изотопов одного металла зависит от массы атома. Массовое число изотопа не могло бы влиять на процесс, если бы переход обусловливался взаимодействием самих электронов или их взаимодействием с жёстко фиксированными атомами. Поэтому приближение, в котором атомы фиксированы, следует считать неправильным. Но каким образом колебания атомов приводят к внезапному скачку теплоёмкости, а ниже критической температуры делают возможной электрическую проводимость без сопротивления? Этот вопрос впервые был убедительно разъяснён Бардином, Купером и Шриффером 19). Метод интегрирования по траекториям не сыграл в их анализе никакой роли; он фактически никогда не был полезен при рассмотрении вырожденных ферми-систем.

19) J. Вагdееn, L. N. Соореr, J. R. Sсhгiеffеr, Phys. Rev., 106, 162; 108, 1175 (1957). (Математически корректная теория этого явления была одновременно разработана Н. Н. Боголюбовым как обобщение его работ по теории сверхтекучести; см. литературу в примечании на стр. 314.— Прим, ред.)

Закон Планка для излучения абсолютно чёрного тела. Легко получить функцию распределения для любой системы взаимодействующих осцилляторов. Такая система эквивалентна набору независимых осцилляторов с частотами ω𝑖. Величина свободной энергии 𝐹 для совокупности независимых осцилляторов равна сумме свободных энергий каждого из этих осцилляторов. Последние, как это видно непосредственно из (10.69), равны

𝓀𝑇 ln