Выбрать главу

А теперь возникает парадокс. Действительно, предположим, что мы объединяем два эксперимента. Будем следить, через какое отверстие проходит электрон, и в то же время определять вероятность того, что он попадёт в точку 𝑥. Тогда о каждом электроне, попадавшем в точку 𝑥, мы можем сказать, основываясь на эксперименте, пришёл он через отверстие 1 или через отверстие 2. Сперва мы можем проверить, что вероятность даётся кривой b. Если из всех попадающих в точку 𝑥 электронов отобрать только те, которые приходят через отверстие 1, то мы убедимся, что их распределение действительно очень близко к кривой b (этот результат получается независимо от того, открыто или закрыто отверстие 2, и нам ясно, что это обстоятельство никак не влияет на движение вблизи отверстия 1). Если же отобрать электроны, проходившие, как мы видели, сквозь отверстие 2, то получим кривую 𝑃2, очень близкую к кривой 𝐶 на фиг. 1.2. Но тогда каждый электрон появляется только в одном из двух отверстий, и мы можем разделить все электроны на два различных класса. Следовательно, если объединить теперь оба эти класса, то мы должны получить распределение 𝑃=𝑃1+𝑃2 (кривая d на фиг. 1.2) и притом получить это экспериментально. Теперь интерференционные эффекты в эксперименте почему-то не проявляются.

Что же изменилось? Когда мы следим за электронами, чтобы установить, через какое отверстие они проходят, то получаем результат 𝑃=𝑃1+𝑃2. Если же не следим за ними, получаем другой результат:

𝑃=|φ

1

2

|²≠𝑃

1

+𝑃

2

.

Как видно, следя за движением электронов, мы изменили вероятность того, что они попадут в точку 𝑥. Как это могло произойти? Впрочем, для наблюдения за электронами мы использовали свет; видимо, он при столкновении с электронами изменяет их движение, или, точнее, изменяет вероятность их попадания в точку 𝑥.

Нельзя ли ослабить интенсивность света в надежде уменьшить таким образом его воздействие? Незначительное возмущение, разумеется, не сможет вызвать конечное изменение распределения. Однако слабый свет вовсе не означает более слабого воздействия. Свет состоит из фотонов с энергией ℎν и импульсом ℎ/λ (где ν — частота и λ, — длина волны). Ослабить свет — значит просто уменьшить количество фотонов, так что мы могли бы вообще перестать видеть электрон, но если мы его все же видим, то это означает, что фотон рассеялся как целое и электрону передан конечный импульс порядка ℎ/λ.

Электроны, которые мы не видим, распределяются в соответствии с правилом интерференции а, тогда как замеченные нами и, следовательно, рассеявшие фотон попадают в точку 𝑥 с вероятностью 𝑃=𝑃1+𝑃2. Поэтому суммарное распределение представляет собой среднее взвешенное распределений а и d. В случае большой интенсивности света, когда рассеяние происходит почти на всех электронах, оно близко к распределению d; в случае же очень малой интенсивности, когда лишь незначительное число электронов рассеивает свет, оно становится более похожим на распределение a.

Могло бы показаться, что, поскольку свет передаёт импульс ℎ/λ, можно было бы все же попытаться ослабить этот эффект, применяя свет с большей длиной волны. Однако всему есть предел. Если длина волны очень велика, мы не сможем определить, где рассеялся свет: за отверстием 1 или за отверстием 2, поскольку источник света с длиной волны λ нельзя локализовать в пространстве с точностью, превышающей λ.

Таким образом, во избежание парадокса любое физическое вмешательство, имеющее целью определить, через какое отверстие проходит электрон, должно исказить опыт и превратить распределение а в d.

Впервые это заметил Гейзенберг; он сформулировал свой принцип неопределённости, гласящий, что самосогласованность новой механики требует ограничения точности, с которой могут быть выполнены эксперименты. В нашем случае это означает, что любая попытка сконструировать прибор, определяющий то отверстие, через которое прошёл электрон, и при этом настолько «деликатный», чтобы не вызвать нарушения интерференционной картины, обречена на неудачу. Внутренняя согласованность квантовой механики требует общности этого утверждения; оно обязано охватывать все физические средства, которые можно было бы применить для уточнения траектории электрона. Мир не может быть наполовину квантовомеханическим, наполовину классическим.