Выбрать главу

Диалог этот состоялся в 1874 году в стенах Мюнхенского университета между молодым человеком, выбиравшим свою жизненную стезю, и профессором физики Филиппом Жоли. Юноша колебался, какой путь выбрать – стать физиком или музыкантом. Он писал музыкальные пьесы, отлично играл на рояле и имел хороший голос. Но физика его интересовала тоже, и в математике парень разбирался отлично. Старенький профессор окинул взглядом студента и сказал:

– Молодой человек! Физика как наука кончилась: она практически завершена. Осталось сделать пару мелких уточнений, на которые вам, наверное, не стоит тратить жизнь.

– Да я в мировые звезды и не рвусь. – Ответил юноша. – Меня устраивают мелочи. Сделаю пару уточнений!

Звали этого молодого человека Макс Планк. В 1947 году «Нью-Йорк Таймс» назвала его одним из самых величайших гигантов мысли в истории цивилизации наряду с Эйнштейном и Архимедом. На надгробии этого человека вместо дат рождения и смерти выбито число, которое в физике называется «постоянная Планка». Это главная константа квантового мира…

Кстати, став физиком, Планк играть на рояле не перестал, и порой они с Эйнштейном, который приносил с собой скрипку, зажигали на пару. Думаю, музыка много потеряла…

Сам Планк был человеком трагической судьбы. Две его дочери умерли молодыми в родах. Старший сын пал на Первой мировой войне в знаменитой Верденской битве, известной как «Верденская мясорубка», где погибло тогда более миллиона человек. Младший сын был казнен в январе 1945 года за участие в покушении на Гитлера, которое организовал полковник фон Штауфенберг. В конце войны дом Планка был разбомблен, и старый уже к тому времени Макс Планк пошел со своей женой, оставшись без всего в этой жизни, куда глаза глядят.

А главной научной трагедией Планка было то, что этот человек, положивший начало квантовой механике и придумавший само слово «квант», так и не поверил в существование квантов. Он-то полагал, что его формулы – это всего лишь паллиатив, костыль, временное вспомогательное решение проблемы, пока физика не придумает что-то посущественнее и пореальнее его квантов. Но все дело в том, что он сам и был – физика! Планк стоял в самом ее передовом ряду и не было никого первее.

Так что же за проблемы возникли у физики в конце XIX века? Какая малая дырочка оказалась столь влиятельной, что разрушила плотину, через которую в физику хлынул целый новый мир, ранее не замечаемый?

Дырочек было две. Первая – несоответствие фактического положения Меркурия его теоретическому положению, просчитанному по ньютоновской механике. Вторая закавыка – та самая ультрафиолетовая катастрофа, которая заключалась в том, что как-то неправильно излучало абсолютно черное тело.

Что такое абсолютно черное тело?

Еще в 1860-х годах один из учителей Планка, Густав Кирхгоф, придумал модельный объект для мысленных экспериментов по термодинамике – абсолютно черное тело (АЧТ). По определению, АЧТ – это такое тело, которое поглощает абсолютно все излучение, падающее на него, и ничего не отражает. Кирхгоф показал, что АЧТ – это еще и лучший излучатель из всех возможных. Ведь тот факт, что абсолютно черное тело поглощает все излучение, говорит о том, что оно нагревается, а значит, излучает тепло (и свет при сильном нагреве)!

Самой распространенной моделью черного тела, которую приводят в пример школьникам, является сфера с внутренней зеркальной или черно-сажевой поверхностью и дырочкой, как на рисунке. Луч света, залетев в дырочку, попадает в ловушку и поглощается сажей или начинает бесконечно отражаться от стенок, потому что вероятность вырваться обратно у него очень мала.

Модель абсолютно черного тела. АЧТ – это не вся сфера, а только дырочка, в которую попадает свет и оттуда уже не вылетает.

Рис. 5

Естественно, как любой нагретый объект, черное тело излучает в широком диапазоне длин волн, причем, по мере нагрева пик излучения смещается в коротковолновую (высокочастотную) область. Ближайший аналог АЧТ – нагретый до красноты или белого каления кусок металла: чем выше температура куска металла, тем белее его свечение.

Так вот, расчеты, проведенные в соответствии с классической физикой, давали очень хорошее совпадение с экспериментом в области длинноволнового излучения (для не сильно нагретых тел), но для тел, нагретых сильно, то есть излучающих в области коротковолновой, классическая физика давала абсурдный результат – тело должно было излучать бесконечно большую энергию!