1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d9.
Если сложить верхние индексы, мы увидим, что общее число электронов в сумме дает 29.
Единственная проблема, с которой столкнулся Паули, состояла в необходимости введения четвертого квантового числа, которое полностью объясняло эффект Зеемана, как нормальный, так и аномальный. Паули никак не истолковал это число, но двое молодых исследователей из Лейдена, Джордж Уленбек (1900-1988) и Сэмюэл Гаудсмит (1902-1978), решили, что это четвертое квантовое число можно считать четвертой степенью свободы электрона, чем-то вроде внутреннего вращения, аналогичного вращательному движению планет вокруг своей оси. По данной причине это четвертое атомное число было названо спином (от английского spin — «вращаться»).
Все вышесказанное подводит нас к принципу запрета Паули: в одной и той же системе, в одном и том же атоме каждый электрон должен отличаться от всех остальных; его четыре квантовых числа не могут совпадать. Это объясняет, например, что в самом низком состоянии энергии любого атома все электроны не могут находиться на первом орбитальном уровне, они распределяются по возрастающим уровням энергии и квантовым числам.
Гейзенберг развил этот новый ход мысли до конца. Речь не только о том, чтобы забыть об орбитах электронов в атомах, но и о том, чтобы перестать думать о траекториях в целом и даже о классическом понятии частицы как чего-то ограниченного в пространстве. Значительная часть новой механики была сформулирована Гейзенбергом во время отпуска на Гельголанде, маленьком острове в Северном море. Его формулировка в итоге стала одним из предложений, изменивших физику.
Гейзенберг, освободившийся от неуверенности в себе, характеризовавшей его в молодые годы, сказал, что квантовая физика слишком осложнена моделями, которые не имеют под собой никакого основания и уже не справляются с предсказанием эмпирических результатов. Вместо того чтобы брать за отправную точку модели, нам незнакомые, лучше взять действительно известные данные: число и интенсивность спектральных линий, рассеяние излучений и света или любое другое явление, связанное с электронами и излучениями. И Гейзенберг, будто нумеролог или каббалист, принялся организовывать данные энергии и интенсивности по рядам и столбцам. Так он заметил, что складываются любопытные повторяющиеся математические отношения, которые позволяют ему с относительной легкостью оперировать эмпирическими данными.
Историки науки много раз задавались вопросом, как возможно, чтобы поколение молодых ученых, происходивших в основном из Германии и Австрии, сумело изменить облик физики за такой короткий срок. Необходимость объяснить абсолютно новые явления, возникшая после открытия рентгеновских лучей, радиоактивности и электрона,— недостаточный аргумент. В странах, проигравших Первую мировую войну, было очень неспокойно. Гиперинфляция в Германии и, в меньшей степени, в Австрии, наряду с постоянными революционными движениями со всех сторон политического спектра, определили атмосферу неуверенности, где понятие «вероятности» накладывалось на понятие «причинной обусловленности». Молодые ученые видели необходимость разрыва со старой традицией, которая привела их страны к катастрофе. Есть и еще один аспект. В обстановке кризиса и неуверенности, если кто-то хотел получить должность в университете, нужно было уметь привлечь к себе внимание. Так социально-экономическая обстановка определила рискованный ход мысли для молодежи, озабоченной своим профессиональным будущим. Естественно, мы говорим только о тех революционных идеях, которые работали, иначе можно было бы вспомнить множество теорий, отошедших в мир иной; имена их создателей так и не попали в историю науки. Несомненно одно: в более стабильной, более традиционной ситуации идеи таких людей, как Гейзенберг и Паули, принять было бы сложнее.
Вернер Гейзенберг.
Первым, с кем он обменялся идеями, был Паули, и только на исходе лета взволнованный Бор увидел, что спустя десять лет его радикальная идея уже устарела, а молодые ученые вроде Гейзенберга и Паули меняют облик физики. По достоинству оценил проделанную Гейзенбергом работу его старый учитель и коллега по Геттингену Макс Борн, в большей степени математик, чем физик. Он увидел, что числовые отношения, найденные Гейзенбергом, совпадают с алгеброй Давида Гильберта (1862-1943), выведенной за несколько лет до этого также в Гёттингене. То есть идеальная конструкция (гильбертовы пространства), сформулированная для развития чистой математики, нашла практическое применение в объяснении физики самого малого и невообразимого.