Выбрать главу
ЭКСПЕРИМЕНТАЛЬНАЯ НАУКА В КОПЕНГАГЕНЕ

С момента открытия в годы Первой мировой войны Института теоретической физики основным оборудованием в нем были бумага и карандаш, доска и мел, а также постоянно пополнявшийся книжный и журнальный фонд. В 1930-х Бор реорганизовал свое учреждение и превратил его также в экспериментальный центр ядерной физики первого порядка.

Успех первого ускорителя частиц Кокрофта и Уолтона в Кембридже подстегнул сооружение других ускорителей и развитие новых технологий во многих центрах физики во всем мире. Бор решил, что Копенгаген не может отстать в этой набирающей обороты гонке. Благодаря авторитету и административным способностям Бор получил финансирование, достаточное для строительства не одного, а трех ускорителей: двух линейных и одного циклического, или циклотрона.

Смысл ускорителей был не только в изучении ядерной физики на более глубоком уровне, но и в производстве радиоактивных изотопов для медицинских целей. И именно так сложился симбиоз биологии с физикой в Институте Бора.

Дьёрдь де Хевеши, с которым Бор уже сотрудничал в Манчестере, отвечал за развитие биологической части ядерного проекта. Идея заключалась в создании радиоактивных изотопов низкой интенсивности для использования в качестве маркеров в тканях и органах.

ЛИНЕЙНЫЕ И ЦИКЛИЧЕСКИЕ УСКОРИТЕЛИ

Гонка строительства все более мощных ускорителей частиц в 1930-е годы имела конкретную цель: контролировать в лаборатории явления высокой энергии, которые на тот момент были возможны только в непредсказуемых процессах космических лучей. Чтобы ускорить частицы при высокой энергии, нужно чтобы они были электрически заряженными. Нейтральные частицы, такие как нейтроны или сами атомы в обычном состоянии, могут быть ускорены, только если что-то предварительно ускоренное столкнется с ними. Есть два вида ускорения частиц с электрическим зарядом: линейное и циклическое. В первом случае частицы ускоряются электрическим полем: создается разница потенциалов между концами трубки, образуется электрическая энергия, ускоряющая заряженную частицу. Существенный недостаток этой техники: сложно создать большие разницы потенциалов без произведения электрического разряда, который бы их аннулировал. В циклических ускорителях используются одновременно электрическое и магнитное поля. Первое служит для небольшого ускорения частицы, а второе — для искривления ее траектории, чтобы частица вновь прошла через электрическое поле и вновь была ускорена. Так достигают того, чтобы одно и то же электрическое поле давало много импульсов заряженным частицам, чем увеличивало бы их скорость.

Циклотрон Калифорнийского университета, 1939 год.

Радиоактивность всегда рассматривали как форму проникающей энергии, с помощью которой можно сжигать и разрушать недоступные ткани. Так, вскоре радиоактивность более или менее успешно была направлена на борьбу с раком. Хевеши рассуждал иначе и занялся производством радиоактивных материалов, химические и биологические свойства которых были хорошо известны. Энергия излучения этих веществ должна быть очень низкой, но достаточной для обнаружения с помощью очень чувствительных приборов. Получив эти изотопы, их вводили в тело живого существа и прослеживали маршрут благодаря радиоактивности. С помощью этого метода можно было обнаружить, например, препятствия, вероятные признаки аномалии, порока развития или опухоли.

РАСЩЕПЛЕНИЕ ЯДРА

Из всех частиц, которые были обнаружены в 1930-е годы, нейтрон стал «звездой» физики. Ввиду его нейтрального заряда было относительно легко использовать нейтроны для исследования внутреннего строения ядра, поскольку они им не притягивались и не отталкивались. Многие физические лаборатории в Европе и некоторые в США и Японии занимались ядерным исследованием с помощью нейтронов. Вскоре было замечено, что иногда при бомбардировке атомов нейтронами последние поглощаются ядром, в связи с чем оно превращалось в другой изотоп этого же самого элемента. Но новые ядра были нестабильны, поэтому быстро распадались, испуская радиоактивность. Так перешли к изготовлению новых радиоактивных элементов. Особенно завораживающими были трансурановые элементы — те, что шли за ураном в периодической таблице.