Выбрать главу

¿Qué era antes lo fundamental en el estudio de las propiedades de un nuevo elemento? Aislar cantidades más o menos considerables de compuestos del mismo. Y ya sabemos con qué poco aprendieron a conformarse los químicos para determinar la magnitud absoluta de esas “cantidades más o menos considerables”.

Con relación a los transuránidos, el problema de la separación queda relegado al segundo plano. Antes de aislar esos elementos, hay que obtenerlos. El proceso de la obtención se desarrolló con relativa facilidad sólo en lo que respecta a los primeros transuránidos. Pero a medida que los químicos iban adentrándose en el “bosque” de los transuránidos, menos cantidad de “leña” encontraban.

Aquí entra en juego la magnitud llamada período de semidesintegración. Ya hemos tenido ocasión de hablar de ella: es el tiempo que tardan en desintegrarse la mitad de los átomos de un elemento radiactivo dado. Los primeros transuránidos son bastante estables. Por ejemplo, el período de semidesintegración del neptunio se cuenta en millones de años, y el del curio, en decenas de miles de años. La variedad de vida más larga del plutonio posee un período de semidesinlegración de varios millones de años. Pero, en adelante, la susodicha magnitud decrece rápidamente. El berkelio “muere” a medias en siete mil años; y el californio no necesita para ello más de cuatrocientos. Después la cuenta se lleva ya en días. El período del einsteinio es de unos 300 días; el del fermio, de 20 horas, y el del mendelevio, de unos minutos.

Si son días, menos mal. Pero ¿qué hacer cuando son sólo minutos?… Pues se ha de tener en cuenta que la obtención y el subsiguiente aislamiento del elemento son procesos bastante largos. Y resulta que en fracciones de minuto hay que aislar el elemento, concentrarlo, y estudiar después sus principales propiedades químicas y físicas. Claro que en un elemento efímero no es posible hacerlo, por febril que sea la actividad con que manipulare el experimentador.

“Pues si no se puede, ¿qué se va a hacer? —dirán Ustedes—, por encima de la propia cabeza no se puede saltar”.

Y eso hacían antes los químicos. Al chocar con una circunstancia semejante, por ejemplo, con la inestabilidad del compuesto que les interesaba, ahogaban un suspiro de desengaño y culpaban a la Naturaleza.

Pero en un problema como el de los transuránidos, ¿podían acaso los químicos modernos achacar los obstáculos a “la voluntad divina”? Suspiros de pena los hubo, y en abundancia, no hay porque negarlo. Mas tales son precisamente los casos en los que la emotividad no pesa.

Cuando apareció el primer artículo sobre el elemento N° 101, el mendelevio, casi todos los químicos con los que conversamos en aquellos días sobre la cuestión fueron de la opinión unánime de que en él se había deslizado una errata. ¿Como podía ser de otro modo, si en dicho artículo se decía, literalmente, lo siguiente: del elemento N° 101 han sido identificados 17 átomos? Todos coincidían con unanimidad en que el linotipista, distraído, había pasado por alto, después de la cifra 17, el diez elevado a una determinada potencia. Allí debía figurar, por ejemplo, 17·108, o por lo menos, 17·106, aunque, a decir verdad, esta última magnitud es también tan pequeña que cuesta mucho de imaginar. ¿Por qué? Pues, porque tan sólo el número de átomos contenidos en un centímetro cúbico de aire es tres mil millones de veces mayor que 17·106. O sea, que incluso una porción de substancia integrada por diecisiete millones de átomos no es fácil de concebir: con más razón, al principio ni siquiera cabía en la imaginación que en el artículo se hablara sólo de diecisiete átomos. No obstante, todo en el artículo estaba correcto, y en vano culpamos al linotipista.

Al descubrimiento de tan insignificante cantidad de mendelevio en el material que hacía de blanco, y que se había sometido a bombardeo con el fin de obtener el elemento N° 101, contribuyeron las propiedades radiactivas de éste. Las partículas alfa emitidas por distintos elementos radiactivos se distinguen unas de otras por su energía. Al igual que la velocidad inicial del proyectil lanzado por un arma de largo alcance difiere de la de una bala disparada por un fusil de pequeño calibre. Pues bien, determinando la energía de una partícula alfa se puede asegurar de qué elemento radiactivo proviene ésta.

Y detectar la desintegración hasta de un solo átomo no ofrece hoy día ninguna dificultad. Existen aparatos de una sensibilidad asombrosa a los fenómenos de la desintegración radiactiva. Esos aparatos permiten determinar qué partícula radiactiva es la emitida por la desintegración del átomo y cuáles son su energía y carga. Por mediación suya pudo observarse cómo en un blanco de einsteinio, por bombardeo con partículas alfa, se formaban átomos del elemento N° 101.

Al empezar los experimentos con vistas a la obtención del elemento de número atómico 102, los científicos ya sabían que su período de semidesintegración sería de pocos minutos.

Inicialmente se decidió intentar la obtención del elemento N° 102 por bombardeo del curio con núcleos de carbono (96 + 6). Para ello se habían obtenido en los EE.UU. cantidades considerables de curio. El blanco —una fina capa de curio aplicada sobre una hoja de aluminio— fue preparado en Inglaterra y llevado con las mayores precauciones a Suecia, donde, por último, en el Instituto Nobel, le sometieron a un bombardeo con carbono.

Ni siquiera se trató de aislar el elemento N° 102 del blanco. Establecióse que éste, después del bombardeo había “expulsado” varias partículas alfa de una energía desconocida hasta entonces; y eso bastó para declarar la obtención de un nuevo elemento, al que llamaron “nobelio” por el nombre del Instituto donde se había efectuado el bombardeo del blanco de curio.

Empero, con este elemento no todo fue tan liso y llano como con los demás transuránidos precedentes. Cuando en los EE.UU. repitieron los experimentos para su obtención, los resultados de los investigadores suecos no se vieron confirmados. El símbolo No, que había ocupado el espacio N° 102, empezó a vacilar y acabó desapareciendo. La cuestión quedó en pie.

En 1957 un grupo de investigadores soviéticos empezó a trabajar para obtener el N° 102. Cinco años duraron las pesquisas. Y por fin se anunció que en el laboratorio de G. N. Flerov, en el Instituto Unificado de Investigaciones Nucleares, habían obtenido casi un millar de átomos del elemento cuyas propiedades químicas concordaban en absoluto con las que debía presentar el elemento situado en el espacio N° 102.

Después apareció otro “nuevo inquilino” en el Sistema periódico: fue habitado el espacio N° 103, habiéndose instalado en él el laurencio.

Ultimamente, los físicos soviéticos han sintetizado el elemento N° 104, que recibió el nombre de kurchatovio, en honor del académico soviético I. Kurchatov.

En los diversos países y continentes los científicos alientan la misma idea, sienten el mismo afán de alejar lo posible los límites del Sistema periódico, de ensanchar los horizontes de los conocimientos humanos.

Ahora, mientras Usted lee estas líneas, en los laboratorios hay hombres con bata blanca, que, inclinándose sobre un gran número de aparatos, siguen atentamente las indicaciones de las agujas. Alguno de los experimentadores dice algo en voz queda a los que le rodean, y, con un ademán que denota contrariedad, escribe varias líneas en un voluminoso cuaderno, en cuyas tapas se lee con caracteres gruesos: N° 105. Y acto seguido, dirigiéndose a sus colaboradores, añade: “Probaremos en otras condiciones…”

Es posible también que la suerte sonría a esos exploradores de lo ignoto en este preciso instante.