Lo mejor será considerar esas cuestiones por orden. Así, pues, ¿no se podría intentar el descubrimiento de transuránidos en cualquier parte del Universo?
Será conveniente recordar aquí que los métodos espectroscópicos de investigación, por medio de los cuales se descubrió el helio en el Sol y más tarde en la Tierra, son de una sensibilidad muy grande. Pero a pesar de ello, la espectroscopia no permitió registrar en el Universo la presencia de plutonio o de otros transuránidos, ni aún en forma de indicios. Tampoco dieron los resultados apetecidos los demás métodos de investigación.
La respuesta llegó de donde menos se esperaba. Contribuyeron a hallarla… los historiadores. La Química ha hecho reiterados servicios, grandes y pequeños, a los historiadores, y en particular a los arqueólogos: unas veces determinando la composición de alguna aleación antiquísima, otras analizando una tinta para establecer la fecha en que fue redactado algún manuscrito. Pero que los historiadores ayudaran a los químicos, casi podemos estar seguros de que era la primera vez. Y creemos necesario hablar de ello con más detalle, sobre todo teniendo en cuenta que tendremos que empezar desde lejos.
…Habrá que empezar por el 4 de julio de 1054. Aquel día, mejor dicho, aquella noche, el astrónomo del observatorio pequinés del Gran Dragón, Ma Tuan-lin, salió como de costumbre a la terraza central para observar el firmamento. Pasó algún tiempo escrutando las estrellas, y, persuadido de que la disposición de los astros coincidía con la prevista, se dispuso a anotar sus cálculos en un grueso cuaderno que iba llenado desde hacía muchos años. Pero el pincelito no llegó hasta el recipiente de la tinta china: la mano que lo sostenía quedó suspendida en el aire. El astrónomo acababa de distinguir, casi encima de su cabeza, una estrella de bastante brillo. La víspera, no estaba en aquel sitio. De ella no se decía nada en los antiguos tratados, cuyo contenido conocía tan bien Ma Tuan-lin, que era un verdadero científico. Al día siguiente, aquella estrella se encendió en el firmamento mucho antes de que el Sol cediera su dominio a la noche. Las calles se llenaron de un gentío que comentaba en voz alta tan inusitado espectáculo.
En sus notas Ma Tuan-lin dio a dicha estrella el nombre de Huésped. El astrónomo chino había escogido un nombre muy adecuado para la nueva estrella, Huésped cada día brillaba más. Al cabo de dos meses su luminosidad era mayor que la de la Luna. Los niños, dotados de penetrante vista, la distinguían incluso de día, cuando el Sol lucía con todo su esplendor. Hoy no es difícil de calcular, si todo fue así —y no hay razón alguna para dudar de la fidelidad de las notas de Ma Tuan-lin—, que aquel nuevo lucero tenía la luminosidad de seiscientos millones de soles como el nuestro.
No obstante, la recién llegada brilló en el firmamento sólo unos dos meses; después, su luminosidad fue decreciendo con rapidez. Al cabo de medio año ya no se diferenciaba en nada de las demás estrellas. Y pasado otro año, en el lugar que ocupara Huésped, volvía a reinar, como dos años antes, la negrura del cielo.
Cuando los historiadores hallaron las notas del científico chino de la Edad Media, a los que menos sorprendieron con ellas fue … a los astrónomos. Y es que el fenómeno descrito por Ma Tuan-lin es bien conocido en la Astronomía contemporánea, designándosele con el nombre de estrellas supernovcis. La aparición de novas en el firmamento puede observarse con relativa frecuencia.
Verdad es que estrellas tan extraordinariamente brillantes como fue la supernova-1054 se ven muy raras veces. Pero durante las exploraciones de la bóveda celeste con el telescopio, el descubrimiento de supernovas es un fenómeno bastante corriente. Cuando en el año 1948 se enfocó un radiotelescopio hacia el punto donde se hallara en un tiempo la Huésped descrita por Ma Tuan-lin, establecióse que de allí procedía un intenso flujo de ondas electromagnéticas. Este fenómeno sugería muchas cosas…
Sospechamos que el lector, impaciente, quisiera interrumpirnos con la pregunta: “¿Por qué a lo largo de toda una página se habla de astrónomos, historiadores, radioastrónomos, y no se menciona en cambio ni una sola vez a los químicos? La pregunta es muy razonable. Los químicos saldrán ahora, sin taita, ya que el poderoso torrente de radioondas proveniente del lugar que ocupara la supernova-1054 les atañe a ellos, ante todo.
Es sabido que las radioondas que llegan a la Tierra desde los espacios universales son originadas por explosiones de estrellas novas. Y esas explosiones, según se cree ahora, se deben a la formación y desintegración de elementos químicos.
La fuente de la energía del Sol es la reacción de transmutación del hidrógeno en helio. Pero nuestro astro es una estrella relativamente joven. En el Universo hay estrellas más viejas, en las que una parte considerable de su hidrógeno “se ha quemado”, convirtiéndose en helio. ¿Quiere decir esto que tales astros se extingan? Ni mucho menos. Los núcleos atómicos del helio, uniéndose, forman átomos de carbono.
Hay motivos para creer que cuanto mayor es la edad de una estrella, tanto más pesados son los elementos que se forman en ella. Pero es evidente que tal aumento no puede ser infinito. ¿En qué elemento, pues, se interrumpe ese proceso de crecimiento del número atómico de los elementos en las estrellas?
Todas las sugerencias coinciden en que ese elemento es el californio. La cuestión es que las estrellas novas presentan una particularidad común: el período de semiextinción del brillo (es decir, el tiempo en que su luminosidad se reduce a la mitad de la máxima) es de unos 55 días, coincidiendo casi exactamente con el período de semidesintegración del californio (de peso atómico 254).
Así se iba cumpliendo el sino de los elementos en el Universo. El aumento continuo del número y peso atómico de los elementos que constituyen las estrellas conduce al aumento de la densidad y a la disminución de la luminosidad de las mismas. Más adelante, cuando la acumulación de californio en la masa de la estrella es ya grande, se produce una explosión nuclear, y tanto aquél como otros elementos pesados se desintegran, dando origen a elementos más ligeros.
Así pues, puede considerarse que por lo menos uno de los transuránidos se forma en los espacios extraterrestres, durante los procesos que se desarrollan en las estrellas. Y si se forma californio, también debe haber curio y plutonio, puesto que ambos son productos de la desintegración radiactiva del primero.
Veamos ahora la segunda pregunta: ¿podrán formarse, actualmente, transuránidos en la Naturaleza?
La obtención de transuránidos por vía artificial no detuvo las búsquedas de los mismos en la corteza terrestre, en las rocas y minerales. Y ello obedecía a las consideraciones siguientes. En primer lugar, las búsquedas no tendrían que realizarse ya a ciegas, puesto que las propiedades del neptunio, y no digamos las del plutonio, estaban ya muy bien estudiadas. Y en segundo lugar, había que saber si no se darían, en algún lugar de la Tierra, las condiciones necesarias para la formacíon de neptunio o de plutonio a partir del uranio.
Esta última consideración parece absurda; y sin embargo, fue la primera en verse confirmada. Varios años antes del descubrimiento del plutonio se supo ya que algunos átomos del uranio, en lugar de la desintegración habitual (emisión de partículas alfa, beta o gamma), se escindían en dos partes, en el sentido literal de la palabra. Con la particularidad de que en este caso no sólo se producía la formación de fragmentos nucleares, sino también una emisión de neutrones. Verdad es que por cada desintegración de este tipo había varios millones de desintegraciones ordinarias.