¿Y el dióxido de carbono disuelto en el agua? ¿Y el dióxido de azufre que, aunque sólo sea en cantidades despreciables, han podido absorber las aguas del río al pasar por delante de cualquier fábrica donde se emplea como combustible el carbón? ¿Y el fenol que por culpa de algún mal director de fábrica química ha podido ir a parar al río en cualquier parte de su curso alto? Resumiendo, podemos decir que el agua de nuestra llave contiene, además de hidrógeno y oxígeno, cantidades apreciables de un buen tercio de los elementos integrados en el Sistema periódico de Mendeleiev. Y conste que sólo hemos podido pecar de cortos. Pues bien, aunque tales impurezas sean inofensivas para la salud de los que apagan su sed con esa agua, a nosotros, los químicos, nos molestan. Y por ello vamos a eliminarlas.
Empezamos hirviendo el agua con una disolución alcalina de permanganato de potasio, lo cual produce la oxidación de casi todas las substancias orgánicas contenidas en el agua. La volvemos a hervir con otra disolución de permanganato de potasio, esta vez, acidulada, con lo que logramos la destrucción total de todas las substancias orgánicas. A continuación destilamos el agua, con lo cual eliminamos la mayoría de las substancias extrañas que aún contiene: las sales minerales y una parte considerable del aire.
El agua obtenida, llamada destilada, no es todavía pura, ni mucho menos, puesto que aún contiene bastante aire y casi todo el dióxido de carbono (anhídrido carbónico) inicial. Y como todas las operaciones se han efectuado en recipientes de vidrio, el agua, debido a su acción disolvente sobre éste, contiene también bastante hidróxido de sodio y ácido silícico. En una palabra, todavía dista mucho de ser pura.
Entonces volvemos a hervirla durante varias horas para eliminar la mayor parte posible de los gases, entre ellos el cloro, y después la vertemos en un matraz especial para la destilación. A diferencia del anterior, éste es de platino, y el equipo que ahora empleamos para la condensación del vapor de agua es totalmente de estaño (la acción disolvente del agua sobre dichos metales es casi nula). También es de platino el matraz donde se recibe el destilado. Durante la destilación cuidamos de que el agua no entre en contacto con el aire circundante, ya que, de lo contrario, absorbería nuevamente oxígeno, nitrógeno y anhídrido carbónico. El agua obtenida se llama ya bidestilada. ¡Y se acabó! Con un agua así ya se puede trabajar.
En la sola lectura de la descripción del proceso de purificación del agua habrá invertido el lector, de seguro, unos minutos. ¿Cuánto tiempo se precisará, pues, para llevarlo a la práctica?
Y, sin embargo, nuestra agua no es todavía muy pura. Eso se puede demostrar fácilmente: basta con introducir en ella dos electrodos, unidos a un generador de corriente eléctrica. La aguja del aparato indicará que el agua conduce la corriente eléctrica, a pesar de ser un no electrólito (por lo cual no debía conducirla). Por consiguiente, las impurezas no fueron eliminadas completamente. Verdad es que la conductividad eléctrica que registramos no será muy elevada: del orden de 10–6 siemens. El científico Kohlrausch, que purificaba el agua con suma escrupulosidad, logró obtener valores cien veces menores. Mas bastaba que la dejara unos minutos en contacto con el aire, para que su conductividad eléctrica empezara a crecer rápidamente por efecto de la disolución del anhídrido carbónico del alre.
Lo que acabamos de explicar con relación al agua, puede aplicarse muy bien a cualquier otra substancia. La única diferencia es que, en la mayoría de los casos, la purificación de otras substancias implica aún un trabajo más laborioso y largo que la del agua.
No hemos olvidado, seguramente, que en la Naturaleza no hay substancias de pureza absoluta. Todo compuesto contiene siempre ciertas cantidades, pequeñas o grandes, de substancias extrañas. A medida que los métodos de análisis químico iban perfeccionándose, los químicos fueron obteniendo datos cada vez concretos respecto al número y la cantidad de impurezas contenidas en la substancia sometida a investigación y a la naturaleza de las mismas. Pero una cosa es saber cuántas impurezas hay, y, otra muy distinta. el librarse de ellas.
Además, que lo último no siempre era necesario. Efectivamente, ¿qué necesidad hay de recurrir a complicadas manipulaciones, perder mucho tiempo y malgastar los caros reactivos químicos con el único fin de poder decir que la pureza del compuesto obtenido no es de 99,99% , sino de 99.999%. ¿Vale la pena tanto trabajo, por una milésima de más o de menos? ¡Claro que no!
Tal es la causa de que hasta ahora ningún químico haya pretendido obtener substancia de pureza absoluta. Y ha llegado precisamente el momento en que se ha de relatar un suceso en el que vieron un acontecimiento científico sensacional casi todos los químicos.
Los problemas surgen así…
Hemos escrito “sensacional” y nos hemos quedado pensativos: ¿habremos traducido bien los adjetivos empleados en la literatura extranjera de los años 20 para caracterizar ese descubrimiento? Por lo visto, sí. Lo mismo que otros descubrimientos sensacionales, éste, después de hacer ruido —y por cierto, muy fuerte— en los círculos científicos y semicientíficos, cayó en el olvido con una rapidez inusitada, y en el transcurso de veinte años nadie volvió a recordarlo, ni siquiera en los manuales más importantes. ¿Por qué? Posiblemente porque a los químicos de los años 20 les parecieron demasiado inverosímiles los hechos, descritos en algunos articulitos. La reputación de que gozaban las serias revistas científicas que los publicaron, obligaban a mirarlos con cierto respeto. Pero la experiencia acumulada en el transcurso de los siglos por la Física y la Química hacía pensar que tal vez todo fuera una mistificación. Al reflexionar sobre ello, los graves y adustos profesores sacaban la indudable conclusión de que aquello era absolutamente incomprensible. Y, como suele ocurrir, en vez de buscar la clave de los asombrosos fenómenos, prefirieron relegarlos al olvido.
Preparar una substancia muy pura es cosa difícil, pero todavía lo es más conservarla en estado de pureza. A las substancias puras las acechan enemigos por todas partes. Puede caerles encima alguna gotita de un compuesto extraño, ceniza de la pipa del investigador, barniz de las uñas de la asistente, polen de flores que entre por la ventana y otras mil substancias. Y lo más difícil es impedir que las substancias puras absorban gases y humedad de la atmósfera. ¡El aire penetra en todas partes, y no hay modo de es conderse de él!
De ahí que para la conservación de las substandas purificadas se las guarde en recipientes de cristal, o de otro material adecuado, que se cierran soldando sus bordes.
Eso fue lo que hizo el químico inglés Baker cuando en 1908 guardó en un tubo de vidrio, que cerró soldando sus extremos, trióxido de nitrógeno, un líquido que hierve a la temperatura de +3,5°C. Verdad es que en el tubo había también pentóxido de fósforo. Ello obedecía a que durante la obtención del trióxido de nitrógeno el científico había vertido sin querer un poco de agua sobre la substancia y para eliminarla agregó el pentóxido de fósforo que es uno de los compuestos que muestra mayor “avidez” por el agua: casi ningún compuesto conocido se combina con el agua tan vigorosamente como este polvo blanco.