En todo lo antedicho no hay aún nada de asombroso, nada que pueda ser motivo de sensación. Pero como suele decirse, por ahora estamos en el preámbulo. El verdadero cuento ya vendrá…
Pasaron cinco años. Y un buen día se acordó Baker de que en el laboratorio guardaba un tubo herméticamente cerrado, con trióxido de nitrógeno, que precisamente le hacía falta para ciertos experimentos. Los químicos de todo el mundo acostumbran a purificar los líquidos por destilación. Pues bien, para separar el trióxido de nitrógeno de los pedacitos de pentóxido de fósforo. Baker vertió el líquido en el matraz de un aparato destilador y empezó a calentarlo.
…Aquel día, varios transeúntes pudieron observar en la Slow-Street como un señor ya entrado en años salía del portal del instituto Científico, discutiendo acaloradamente consigo mismo y con la mayor perplejidad pintada en el rostro.
¡Desde luego, a Baker le sobraban motivos para el asombro! Cuando empezó a preparar la destilación todo marchó como de ordinario. Vertió el trióxido de nitrógeno en un matraz refrigerado exteriormente con hielo; el recipiente colector, donde se debía recoger el líquido destilado, lo colocó también en una vasija con hielo. Y se puso a esperar que el trióxido se calentara hasta la temperatura ambiente y empezara a hervir. Pero pasaron diez minutos, veinte, y la destilación no empezaba. Mientras conversaba con sus colegas, Baker miró maquinalmente al termómetro, cuyo extremo estaba sumergido en el líquido, y se quedó perplejo. El termómetro marcaba 20°C, es decir, la temperatura del medio ambiente. Según todos los manuales, el trióxido de nitrógeno debía hervir ya hacía un buen rato; sin embargo, continuaba en calma. Encogiéndose de hombos como respuesta a la muda pregunta del asistente, Baker empezó a calentar con cuidado el matraz. El resultado fue nulo: el azulado líquido seguía inmóvil.
30°… 35°… 40°… Sólo a los 43°C empezó la destilación. En pugna con todos los manuales y con toda la lógica, el trióxido de nitrógeno hervía a 40°C más de los debidos.
“Quizás no sea la substancia que creo” —penso Baker. Inmediatamente hicieron el análisis: era trióxido de nitrógeno puro, purísimo, ¡de una pureza del 100%! La destilación fue repetida: 43°G. ¡Era algo increíble!
En la mesa contigua el asistente de Baker, que no podía quitar la vista del extraño matraz, se puso a preparar febrilmente trióxido de nitrógeno a partir de ácido nítrico. Y por fin tuvo el líquido azul, de aspecto igual que el del otro, colocado a su lado. ¿Cuál sería su temperatura de ebullición? El termómetro indicó 3,5°C. Como tenía que ser. Volvieron a destilar el primer líquido: 43°C.
Baker ordenó cerrar a la llama los tubos con los dos líquidos, se puso el abrigo y salió. Permanecer en el laboratorio cara a cara con el inquietante enigma era superior a sus fuerzas.
¿Qué había maravillado tanto al químico inglés? ¿Sería posible que aquellos cuarenta grados pudieran ser la causa de su extremada agitación?
¡Podían! La cuestión es…
¿Son constantes en realidad las magnitudes constantes?
…La cuestión es que cada substancia simple, igual que cada compuesto químico, tiene propiedades —físicas y químicas— determinadas. Se puede tomar agua, por ejemplo, del Océano Indico o de una ciénaga cubierta de moho, de un témpano de hielo polar o de un charco de la carretera, y sin embargo, cualquiera que sea su procedencia, siempre se congelará a 0° y hervirá á 100°, en condiciones normales. El benceno obtenido como subproducto en la destilación seca de la hulla y el producido por vía sintética —del acetileno, por ejemplo—, no se diferencian ni un ápice.
No sabemos si se podría calificar incluso de axioma un postulado tan palmario como el siguiente: a todo compuesto químico le corresponden un punto de ebullición, un punto de fusión, una densidad, etc., etc., perfectamente determinados. Más aún, en este principio se basan los procesos de purificación de las substancias. Por ejemplo, si se quiere obtener ácido acético puro, hay que tomar ácido acético industrial y eliminar sus impurezas, hasta que funda a 16,6°C. Una vez conseguido esto, se podrá tener la seguridad de que el preparado obtenido es ácido acético puro. Si al destilar una substancia el químico observa que a la presión atmosférica normal dicha substancia hierve, pongamos por caso, a 110,8°C, puede afirmar que lo que tiene en su matraz es tolueno.
Pero ahora tenemos que el axioma pasa a ser teorema. El que a cada substancia le correspondan determinadas propiedades tuvo que ser demostrado aún.
Hay una serie de substancias que los químicos utilizan casi a diario en sus laboratorios. Los puntos de ebullición y fusión de dichas substancias fueron establecidos con especial esmero. Consulte Usted un manual cualquiera de Química, incluso el más breve, y leerá: el benceno hierve a 80°C; el alcohol, a 78,4°C; el bromo, a 59°C; el éter dietílico, a 35°C.
En una palabra, las constantes físicas de estas substancias han sido estudiadas, como suele decirse, a más no poder. Y por ellas decidió Baker empezar la siguiente serie de experimentos.
¿Experimentos? ¿Sobre qué? ¿Sería posible que el investigador tuviera clara la causa del increíble comportamiento del trióxido de nitrógeno?
La causa, por supuesto, no la sabía, pero abrigaba sus sospechas. Creía que “la culpable” de todo era el agua.
El lector ya sabe perfectamente lo laboriosa que resulta para el químico la obtención de una substancia en estado de pureza. Y no cabe duda de que a mayor grado de pureza requerido, más difícil será la obtención. Cualquier substancia orgánica puede ser depurada perfectamente de sus impurezas inorgánicas. Bastante más difícil, aunque factible de todos modos, es eliminar las substancias orgánicas que contiene como impurezas. Pero, ¿cómo preservarla de los efectos del aire, y sobre todo del vapor de agua en él contenido?
Al emprender la purificación del benceno, bromo, sulfuro de carbono, alcohol y demás substancias, Baker sabía ya que del agua, de los insignificantes indicios de agua que las substancias van absorbiendo de la atmósfera, no podría deshacerse.
Así, pues, la premisa principal era la siguiente: todos los compuestos químicos descritos hasta la fecha, por muy puros que se les considere, siempre contienen ciertos vestigios de agua, aunque sea en proporciones despreciables. Y la finalidad del experimento era: preparar varias substancias absolutamente (¡absolutamente!) puras.
Para ello, los líquidos purificados cuidadosamente por el procedimiento ordinario y envasados después, juntamente con pentóxido de fósforo, en ampolletas de vidrio cerradas a la llama, fueron guardados en los cajones de la mesa de trabajo.
En el diario de laboratorio se hizo la siguiente inscripción: 27 de noviembre de 1913. Y después: enero… marzo… junio… de 1914. Aquí se interrumpían los apuntes.
Había empezado la primera guerra mundial. En aquellos tiempos tan tormentosos, Baker no podía ni pensar siquiera en sus ampolletas. Los gobiernos imperialistas exigían de los químicos nuevos explosivos y gases de guerra. Y Baker sólo pudo reanudar el experimento a los nueve años de haberlas cerrado.
Preguntas y más preguntas…
Aquellas ampolletas fueron abiertas en 1922. Su deshermetización se efectuó en unas condiciones que excluían la presencia de humedad: todos ios recipientes fueron secados con sumo esmero, y el corte de las ampolletas se realizó en inmersión de mercurio.