Выбрать главу

¿Cuánto puede pesar un almiar de heno? Pongamos 400 kilos. ¿Y una aguja? Supongamos que una décima de gramo, es decir, 10–4 kg. Considerando los 400 kg como 100 por ciento, ¿qué porcentaje constituirá 0,1 de gramo?

Es decir, que la aguja constituye 25 millonésimas de por ciento del peso de la gavilla. El químico diría que el individuo de que hemos hablado al principio operaba en los límites de la quinta cifra decimal. Y para la química, la determinación de las cantidades de impurezas ocultas tras esa quinta cifra es ya una etapa superada. Con la sexta o la séptima cifra decimal, pongamos por caso, todavía queda mucho por hacer. Pero la quinta es asequible para cualquiera que se lo proponga, y con una inversión de trabajo relativamente pequeña.

Pero ¡si la Química se hubiera limitado a la sexta o séptima cifra decimal!

“¡Cómo! —exclamará el lector—. ¿Es que hacían falta determinaciones aún más exactas? ¿Es posible que se hubiera de ir más lejos aún?” Sí. Muchísimo más. Y si sólo fuera eso, el asunto no hubiera parecido tan complicado.

Cuando hablábamos de la ascensión de la Química por los abruptos peldaños de las cifras decimales, nos referíamos a la determinación analítica de las impurezas. Hacia la mitad de la década del 50, la técnica exigió de la Química no sólo la determinación del porcentaje de impurezas, sino también la separación de éstas, lo cual dista mucho de ser lo mismo. Una cosa es saber qué cantidad de un elemento u otro lleva mezclada la substancia básica, y otra muy distinta, librarse de esas impurezas, separándolas, y de tal modo que quede excluida la adición de nuevas substancias extrañas. Esta segunda tarea es mucho más compleja que la primera.

Pero cuando la técnica y la industria dicen “¡hace falta!”, la Química está obligada a contestar “¡presente!”.

Y empezó el trabajo…

Mas digamos primero para qué precisaba la técnica substancias de tan extraordinaria pureza.

La mayor parte de los materiales semiconductores ponen de manifiesto sus propiedades sólo cuando son de una pureza casi absoluta. Uno de los semiconductores más extendidos es el metal germanio. La técnica moderna de semiconductores requiere a veces germanio del 99,9999999999% de pureza. Esto significa que, por cada billón de átomos de germanio, sólo puede haber un átomo de una substancia extraña. Si en lugar de uno, hay dos, el semiconductor ya no “actúa”.

Así, pues, ante los químicos se alzó, con toda su mole, el pico de la décima cifra decimal. Y a ese Everest de la Química contemporánea no sólo habían de subir algunos científicos por separado. Esa “cima” debía escalarla toda la ingente colectividad de los químicos que trabajaban en la esfera industrial de los materiales semiconductores. El problema que tenían planteado esos químicos no era sólo la obtención de unos dos o tres únicos gramos de una substancia extrapura. Había que construir fábricas, en las que esas substancias se produjeran por centenares y miles de kilogramos.

El lector no habrá olvidado las inmensas dificultades que llevó aparejada la conquista de las “cimas” de la sexta y la séptima cifras decimales. Ahora había que escalar la de la décima. Y se ha de tener en cuenta que, lo mismo que a gran altura cada metro de ascensión representa para los alpinistas más trabajo que un kilómetro de recorrido en el llano, cada nueve añadido a la derecha del número que expresa la pureza del preparado representa para los químicos un esfuerzo multiplicado.

La obtención de substancias de una pureza del 99.99 por ciento, o como se dice a veces, una substancia de “cuatro nueves”, no implica hoy ninguna dificultad para el experimentador, ni siquiera en el laboratorio más modesto. ¿Pero desde cuándo es así?

Tenemos a la vista tres artículos publicados en distintas revistas químicas. En el primero leemos: “Logramos obtener una substancia de extraordinaria pureza: del 99,99 por ciento”. En el segundo se dice: “El porcentaje de la substancia básica en el producto es 99.999. Por consiguiente, el producto puede considerarse relativamente puro”. Y en el tercero se consigna: “La muestra obtenida era bastante impura: sólo contenía el 99,9999 por ciento de metal básico”.

¿Cómo entender eso? Pues las declaraciones de esos tres artículos se excluyen mutuamente.

Y sin embargo, no hay ninguna contradicción. Simplemente, el primero fue escrito a principios de siglo; el segundo, por los años 20, y el tercero es contemporáneo. Estará claro para el lector que la substancia considerada pura hace sesenta años, hoy ya no puede mantener su antigua “reputación”.

Creemos que no carecerá de interés la exposición, aunque sea breve, de los procedimientos usados por los químicos para obtener substancias tan puras.

En primer lugar, la obtención de substancias extrapuras en grandes cantidades se hizo posible gracias a los colosales adelantos de la Química analítica. Pues cuando se desea purificar una substancia hay que saber, ante todo, de qué impurezas hay que librarla, y, después, qué cantidad de dichas impurezas contiene la substancia básica. Las respuestas las da la Química analítica. Y cuanto mayor deba ser la pureza de la substancia, tanto más refinados habrán de ser los métodos empleados por dicha Ciencia, pues cuanto menos impurezas queden, más exactas tendrán que ser las determinaciones analíticas.

En este caso resultan inaplicables incluso los sensibilísimos métodos analíticos de los que hemos hablado en las primeras páginas de este libro. Para el análisis de los materiales semiconductores, los químicos se vieron obligados a renovar todos sus instrumentos de investigación.

De todo el arsenal puesto al servicio de la Química analítica, elegiremos como ejemplo solo dos métodos, pero ellos no bastarán para evidenciar la precisión del arma analítica.

Uno de los métodos analíticos más modernos es el de radiactivación. El metal puro es sometido a bombardeo con neutrones, debido a lo cual sus átomos —no todos, claro está, sino una pequeña parte de ellos— se vuelven radiactivos. Adquieren radiactividad artificial también los átomos de las impurezas. Empero, las características de la radiación de los distintos elementos dotados de radiactividad artificial difieren mucho entre sí. Y detectando la intensidad de cada una de las radiaciones de distinto tipo, es posible determinar la cantidad y el género de las impurezas contenidas en el metal. Este método permite registrar indicios de elementos extraños contenidos como impurezas, en cantidades de hasta 10–12.

Para el análisis de los semiconductores puede emplearse un método específico, basado en el hecho de que la conductividad eléctrica de los materiales semiconductores depende en grado sumo de su pureza. Y como la conductividad eléctrica es una propiedad importantísima de los semiconductores, a éstos se les exige una pureza extraordinaria.

Tan imposible es hablar de todos los artificios a que recurren los químicos para la obtención de substancias extrapuras, tan imposible como, pongamos por caso, estudiar en el transcurso de una sola lección la geografía de nuestro Planeta. En lo fundamental, todos esos métodos se asemejan mucho a los expuestos al describir la purificación del agua. Pero la explicación de los interesantísimos métodos de obtención de substancias de “nueve nueves” o de “diez nueves” es sencillamente indispensable.