Según parece, en estado de pureza ideal las substancias no pueden reaccionar entre sí. Es bien conocido el ejemplo del cloro y el hidrógeno, gases que reaccionan muy enérgicamente entre sí. Si se mezclan a la luz, se produce instantáneamente una fuerte explosión; en la oscuridad, la reacción es algo más lenta. Pero si ambos gases son bien desecados de antemano (haciéndolos pasar repetidas veces a través de pentóxido de fósforo), ya no se combinan en absoluto, ni aun siendo expuestos a la intensa luz solar.
La combinación del cloro con el hidrógeno se produce según la siguiente ecuación:
Pero ¿qué tiene que ver aquí el agua? No se la ve ni a la derecha ni a la izquierda del signo de igualdad. Y no obstante, la reacción no se produce sin agua. Por lo visto, la alteración de la homogeneidad química desempeña también aquí un papel de importancia.
El mundo de las magnitudes infinitesimales
No es casual que nos hayamos explayado tanto sobre las propiedades de las substancias extrapuras, ya que esta cuestión va siendo destacada más y más cada día a las avanzadillas de la Ciencia y de la Técnica.
Además, la presencia de impurezas ínfimas desempeña un papel colosal no sólo en la Química, sino también en muchas otras ciencias.
Y ahora precisamente será oportuno volver a las historietas narrarlas al principio del presente capítulo, y que, a primera vista, pudieron parecer fuera de lugar. Nos referimos a la del monje curandero Jonás y del periodista de Kíev Nikolai Karlishev.
Empezaremos por decir que el agua milagrosa no fue ninguna invención del monje Jonás, el cual, dicho sea de paso, resultó ser un picaro dé tomo y lomo. Ya en los tiempos antiguos, en los monasterios vendían como “agua bendita” un agua que se tenía cierto tiempo en alguna vasija contenedora de monedas de plata u otros objetos de dicho metal.
El agua, al cabo del tiempo, acaba disolviendo algo de plata: una milmillonésima de gramo por litro. ¡Eso es muy poco, poquísimo! Para aislar de tal disolución un gramo de plata, se necesitarían mil millones de litros de la misma. ¡Mil millones de litros, un millón de toneladas de agua!
Empero, esa pequeñísima cantidad de plata basta ya para destruir muchas bacterias. Por cierto que esta propiedad de la plata fue aprovechada inconscientemente ya en tiempos remotos. De ahí que en la antigüedad se estimasen tanto las vasijas de plata: los alimentos condimentados en ellas se distinguen ventajosamente de todos los demás. Esa es la razón de que al preparar el medicamento bien conocido ahora en farmacia con el nombre de “agua de plata”, lo que menos pensaba el monje Jonás era implorar al “verbo divino”, y si en algo confiaba, era en el contenido de la bolsa de sus crédulos pacientes.
Estamos hablando de milmillonésimas y diezmilmillonésimas. Conociendo por propia experiencia la difícil que resulta imaginarse lo que pueden ser estas magnitudes tan pequeñas en su aspecto físico, “material”, nos permitiremos hacer una comparación. Veamos, para empezar, lo que es una milmillonésima de gramo.
Supongamos que hemos logrado repartir equitativamente un terrón de azúcar de 10 gramos de peso entre todos los habitantes de nuestro Planeta. ¿Cuánto le habrá tocado a cada uno? Algunos lectores, encogiéndose de hombros, dirán que tal vez tres o cuatro moléculas, o incluso menos aún. Aunque, por otra parte, eso lo dirían, seguramente, muy pocos, ya que es bien sabido que la Tierra tiene unos tres mil millones de habitantes. Dividiendo el peso del terrón de azúcar por este número, obtendremos 4·10–9 (cuatro milmillonésimas de gramo), es decir, cuatro veces más que la cantidad de plata contenida en un litro de “agua de plata”.
Y no obstante, los químicos hallaron el modo de descubrir hasta cantidades tan insignificantes de dicho metal. En una de sus asambleas hicieron el experimento siguiente. Llenaron un vaso con agua y la agitaron unos minutos con una cucharilla de plata. Después añadieron unas gotas de un reactivo orgánico especial. El agua enrojeció inmediatamente. El mismo reactivo, añadido al agua que no había estado en contacto con la cucharilla de plata, no producía ninguna coloración.
Ejemplos más asombrosos aún de los efectos de las cantidades ínfimas de substancias nos los proporciona la Biología.
Está ya demostrado que en el crecimiento de las células vegetales interviene de un modo activo la substancia llamada auxina. La auxina inyectada al tallo de una planta origina un crecimiento tan intenso de las células en el lugar de la inyección, que el tallo incluso se encorva.
Se considera unidad auxínica a la cantidad de auxina capaz de producir una desviación de diez grados en el tallo de una planta de avena. Dicha unidad equivale a 2·10–11 gramos, es decir, a dos cienmilmillonésimas de gramo. Esa magnitud es ya infinitamente pequeña…
Aunque, por otra parte, no hay necesidad de recurrir a la auxina. Nuestro propio olfato nos proporciona ejemplos de detección de cantidades ínfimas de substancias.
Muchos habrán notado el olor que despide el gas empleado en las cocinas. Ese gas es metano, y cualquier químico afirmará que el metano es inodoro. El olor que percibimos al abrir una llave en la cocina de gas es debido a la presencia de otra substancia llamada iso-amil-mercaptano. que se mezcla especialmente al metano para que se puedan advertir los escapes. Pues bien, la presencia de dicho mercaptano en el aire puede ser percibida incluso cuando la relación es de una parte de mercaptano por cinco mil millones de partes de aire. Es decir, que si en Kíev, por ejemplo, alguien dejara escapar casualmente a la atmósfera cien metros cúbicos de dicho mercaptano, al cabo de unas horas habría tal olor en las calles de Moscú, que los transeúntes se preguntarían, perplejos, de dónde se escapaba gas y por qué no tomaban medidas los equipos de reparaciones.
Reduciendo esas cantidades a gramos, resultará que nuestro olfato puede detectar 2·10–12 gramos de substancia. O lo que es lo mismo, dos billonésimas de gramo. ¡Una sensibilidad muy superior a la de cualquier reactivo químico! Estos ejemplos nos muestran palmariamente que el mundo de las cantidades ínfimas de substancias desempeña un papel colosal en la determinación de las propiedades de las grandes masas de otras substancias. Hemos aducido muchos ejemplos de cómo unos cuantos átomos de impurezas por miles de millones de átomos de la substancia básica modifican por completo las propiedades de ésta. ¡Los liliputienses vencen a Gulliver!
Todo lo expuesto acerca de las substancias extrapuras resultaría incompleto si lo tratáramos con más detalles del aspecto práctico del problema.
Las grandes obras de las cantidades ínfimas de impurezas
Ha llegado el momento de que recordemos otra vez al lector el relato acerca del “negociante” Eugene O’Winstern.
En rigor, después de todo lo expuesto, el lector comprenderá ya la causa de que la columna de Delhi lleve miles de años en un clima tan caluroso y húmedo sin ser atacada por la corrosión. Los análisis del profesor Holl fueron ciertísimos: la columna de Delhi es de hierro absolutamente puro. Y en ese hierro, como ya sabemos, no hace mella la corrosión.
El enigma es otro: ¿cómo fue posible obtener hace tantos cientos de años una cantidad tan grande de hierro purísimo, cuando la obtención de un solo gramo del mismo en los laboratorios actuales se considera una tarea de extraordinaria dificultad? Sobra fundamento para suponer que el hierro de la columna de Delhi es de procedencia meteorítica. Lo más probable es que en tiempos lejanos cayera a la Tierra un meteorito constituido por hierro de pureza absoluta.