Выбрать главу

Hablando con propiedad, no se trata del mismo hidruro, sino del deuteriuro de litio: es decir, del compuesto binario del litio con un isótopo pesado del hidrógeno, el deuterio. Pero desde el punto de vista químico, entre esas dos substancias no hay diferencia alguna. El deuteriuro de litio es la base de la carga explosiva de las llamadas bombas de hidrógeno. Al funcionar un detonador de uranio o plutonio, se desarrolla una temperatura muy alta, bajo cuyos efectos comienza una reacción nuclear, en la que el litio y el deuterio se combinan entre sí, para formar helio. Durante este proceso se desprende una cantidad colosal de energía.

Semejante reacción —es decir, la transmutación del hidrógeno en helio—, es la fuente de la energía del Sol. En dicho astro cada secundo se produce la transformación de 570 millones de toneladas de hidrógeno en 566 millones de toneladas de helio. Pero las reservas de ¡hidrógeno de nuestro astro diurno —verdadero horno de hidrógeno— son tan enormes, que todavía seguirá funcionando al “régimen” actual durante muchos miles de millones de años.

Empero, el litio ya ha encontrado no pocas aplicaciones “terrenas”. Aquí se ha de citar una nueva rama de la metalurgia: la del litio.

Agregando al magnesio un diez por ciento de litio, se obtiene una aleación más resistente, y lo que es más importante, más ligera que el magnesio. Y se ha de tener en cuenta que éste tiene un peso específico muy pequeño en comparación con la mayoría de los demás metales. La adición de insignificantes cantidades de litio a distintas aleaciones confiere con frecuencia a éstas unas propiedades totalmente distintas.

Así, por ejemplo, el “esclerón”, aleación muy conocida a base de aluminio, contiene sólo el 0,1% de litio. Pero sin esa décima de por ciento perdería su resistencia mecánica y su dureza, es decir, las propiedades que le han dado su merecida fama.

Debido a su pequeño peso específico y a su resistencia a las temperaturas elevadas, las aleaciones de litio y aluminio llegarán a ser el material básico en la construcción de aviones que deban volar a velocidades mucho mayores que la del sonido.

En los últimos tiempos se han publicado interesantes investigaciones sobre la aplicación del litio como combustible. Si se inyecta litio pulverizado en un chorro de aire u oxígeno, se produce una combustión que desprende cantidades enormes de calor.

Los cálculos demuestran que la combustión de un solo kilogramo de litio es capaz de rendir la misma cantidad de calor que cuatro mil toneladas de carbón mineral.

Según se ha establecido, las sales de litio de los ácidos esteárico y palmítico son lubricantes magníficos, que conservan sus propiedades en el intervalo de -50° a +150°C.

Se podrían citar muchas más ramas de la técnica y la industria en las que el litio ha encontrado ya aplicación.

Empero, todavía son más las que esperan el empleo de ese admirable metal. De ahí que el litio es llamado, y con toda la razón, metal del futuro.

Por cierto que todos los metales de que se hablará a continuación son, en mayor o menor grado, metales del futuro, como podrá verse en el ejemplo del “protagonista” del capítulo siguiente.

El metal de las joyas

Nadie podría explicar qué movió al científico francés Vauquelin, en una época tan agitada para Francia como fue el final del siglo XVIII, a dedicarse a la experimentación química. Probablemente fuera el dinero. El honorable monsieur Vauquelin no pensaba hacer dinero por procedimientos deshonrosos. Estaba muy lejos de anhelar tos laureles del conde Saint-Germain, famoso falsificador de brillantes, de cuyas andanzas se hablaba tanto en la corte del último de los Ludovicos. Pero, de dedicarse a la Química, ¿por qué no estudiar las propiedades y la composición de la esmeralda, la admirable piedra preciosa que se puede considerar, si no el rey de todas las joyas, por lo menos un duque entre ellas?

Desgraciadamente, los experimentos relacionados con las esmeraldas hubieron de ser suspendidos al poco tiempo, ya fuera porque los ensayos no dieran resultado, ya porque la señora Vauquelin no viera con buenos ojos las pruebas de su marido con las esmeraldas, que resultaban tan dispendiosas para la familia. No obstante, se obtuvieron algunos resultados. Vauquelin aisló de la esmeralda una masa grisácea, a la que por su gusto dulzón llamó “tierra dulce”, o glucina (de “glykys”, que significa dulce). Por entonces los químicos llamaban “tierras” a la mayor parte de los óxidos. Sucedía eso en 1798.

Veinte años después, sería aislado de la glucina un metal brillante, que recibiría el nombre de glucinio, y al que algo más tarde se propondría llamarlo berilio. Esa fue la denominación que arraigó. Y así apareció un nuevo nombre en la lista de los elementos químicos.

Pero, incluso al cabo de otros cuarenta años las propiedades del berilio seguían tan poco estudiadas, que Mendeleiev vaciló mucho antes de decidirse a colocarlo en un espacio determinado. Y de no ser por la genial intuición del gran químico, el berilio, antes de instalarse en el “departamento” N° 4, hubiera danzado largo tiempo por el Sistema (periódico.

La “biografía” del berilio es de lo más extraordinario. No es menos original su “curriculum vitae”. En éste figura como año de nacimiento el 1798. Y como fecha del comienzo de las actividades laborales, el 1932, pues precisamente ese año se emplearon varias aleaciones suyas en la industria. Pero, a semejanza de Ilyá Muromets, el héroe épico ruso que “se pasó treinta y tres años mano sobre mano” y sólo después de ello desplegó toda su colosal fuerza, el berilio empezó a hacer prodigios en cuanto fue puesto al servicio del hombre.

Sí, la cantidad total de berilio en la corteza terrestre es sólo de unas diezmilésimas de por ciento. Pero esas diezmilésimas merecen que se les dé caza.

La densidad del berilio es algo mayor que la del litio, su vecino inmediato en el Sistema periódico; pero, de todos modos, bastante menor que la de otros muchos metales. De tomar en consideración los metales que, en estado libre, presentan estabilidad frente a la acción del aire, el berilio será el N° 1 en la lista. A pesar de quedar, en cuanto a resistencia mecánica, por debajo del acero, la diferencia existente entre las densidades de ambos metales es tan enorme, que cualquier estructura de berilio sería mucho más resistente que otra de acero de igual peso.

Según es sabido, la preocupación mayor de todos los proyectistas de aviones es cómo reducir el peso de las piezas de los aparatos. A veces se pasan meses enteros resolviendo el torturante problema de cómo disminuir el peso del avión aunque no sea más que en varios kilogramos. Y esos kilogramos tienen que ir acumulándolos gramo a gramo: de aquí quitan un tornillo, allí idean un acoplamiento especial, allá sustituyen una pieza de metal por otra de plástico, etc.

Dentro de poco, el empleo del berilio librará de tan penosas búsquedas a los proyectistas. Las aleaciones del berilio con el magnesio y aluminio son bastante bien conocidas, y se puede afirmar con toda seguridad que producirán en la industria aeronáutica una revolución como la que hiciera en tiempos pasados el empleo del aluminio. Cálculos bastante simples demuestran que el radio de acción de los aviones construidos a base de aleaciones de berilio es mayor que el de los fabricados de aluminio.

Esa sola propiedad del berilio prueba con toda claridad que debemos ocuparnos con más tesón de los elementos raros, puesto que son fantásticamente prometedores. El que sean escasos en comparación con los elementos gigantes, no implica nada, pues para algo existe la Química. Y los químicos han justificado las esperanzas depositadas en ellos. Han desarrollado ya diversas variantes para la obtención de berilio barato, incluso a partir de la materia prima más pobre.