Y ahí es precisamente donde el prometio puede resultar utilísimo. Verdad es que el total del prometio obtenido por ahora en todos los laboratorios del mundo no bastaría, de seguro, para un solo “motor cardíaco”. Pero la historia de la Ciencia brinda muchos ejemplos de metales que. escasísimos al principio, se abarataron en varios años con la velocidad de un tren exprés. En 1839, cuando Mendeíleiev estuvo en Londres, le hicieron el valioso presente de una balanza que tenía un platillo de oro y el otro de… aluminio, metal mucho más precioso todavía, en aquellos tiempos. Pero no habían pasado cincuenta años y eil aluminio era ya un material tan corriente como la madera.
Abrigamos el temor de que después de todo lo relatado, la descripción de las “prosaicas” aplicaciones de los demás elementos de las tierras raras pueda parecer aburrida. Pero se nos puede creer, que no por ello menguará la inmensa importancia que los elementos de las tierras raras van adquiriendo para La economía nacional de año en año.
La adición de lantánidos al hierro colado surte un efecto verdaderamente mágico sobre esa aleación, frágil de ordinario. Los metales de las tierras raras reducen muchísimo la fragilidad de este hierro y elevan en igual grado su resistencia mecánica. El hierro colado, que, según se sabe, es difícil de trabajar, por aleación con elementos de las tierras raras puede incluso mecanizarse en tornos. Con la particularidad de que tales elementos deben adicionarse en cantidades ínfimas: de trescientos gramos a dos kilogramos por tonelada de hierro colado. Y lo más importante es que no se requiere su separación previa: obran perfectamente cuando son adicionados “en montón”.
Los últimos años han demostrado que con los elementos de las tierras raras se pueden fabricar vidrios de alta calidad, que se emplean para lentes de telescopio, portillas de batisferas para inmersiones a grandes profundidades y ipara la conservación de productos de pureza muy elevada.
El interés de los investigadores hacia los elementos gemelos es tan grande, que virtualmente cada mes se registran nuevos e importantes descubrimientos en ese campo. No hace mucho, fueron descritas unas propiedades insólitas del gadolinio. Resulta que puede emplearse con éxito para la obtención de temperaturas cercanas al cero absoluto. Para ello, se coloca sulfato o cloruro de gadolinio bajo una atmósfera de gas inerte y se somete a la acción de un campo magnético, con lo que la sal de gadolinio se calienta y cede su calor al gas. Luego se extrae el gas y se suspende la acción del campo magnético. Entonces el gadolinio se enfría considerablemente, en comparación con su t°mperatura inicial.
Repitiendo muchas veces la operación, los investigadores obtuvieron una temperatura sólo dos diezmilésimas de grado mayor que el cero absoluto.
Hace cien años, la existencia de algunos lantánidos se conocía, mejor dicho, se suponía. Sin embargo, la separación de sus compuestos en estado de pureza no era posible. Sesenta y cinco años atrás —en la linde de los dos siglos— se expusieron muestras de algunos lantánidos puros en la exposición internacional de París, lo cual evidenciaba los grandiosos adelantos de la Química. Hace diez años la separación de los elementos de las tierras raras era considerada una labor dificilísima. Hoy se pueden obtener preparados puros de lantánidos en un laboratorio ordinario. Y lo puede hacer cualquier persona auxiliar de laboratorio, guiándose por trabajos bien conocidos sobre la materia y que figuran en libros de texto para la enseñanza superior.
Así alteró el hombre, por primera vez en la historia geológica de nuestro Planeta, la conmovedora hermandad de los elementos de las tierras raras, destruyendo la unida familia de los elementos gemelos.
Una vieja revista humorística publicó en uno de sus números una caricatura. Una decena de barbudos, en los que se apreciaba bien el parecido con eminentes sabios rusos de aquella época, habían echado el lazo a un caracol en el que se leía “La Ciencia”, y tiraban de él para subirlo a un vagón plataforma. Eso quería decir, por lo visto, que el desarrollo de la Ciencia se iba acelerando. No sabemos si un dibujo análogo parecería ingenioso en nuestros tiempos; pero lo que no ofrece ninguna duda es que el vagón de ferrocarril debería ser reemplazado por un cohete cósmico. Lo que hemos relatado sobre los elementos gemelos es la mejor confirmación de ello.
Una milmillonésima de la corteza terrestre
Como es natural, aquí no podremos hablar de todas las regiones de la “Antártida química”, pues son demasiados los elementos que hasta los últimos tiempos fueron inaccesibles para los investigadores y la industria. Pero no podemos pasar por alto algunas de las “manchas blancas”. Más aún, de ellas no se puede hablar breve mente.
Una de esas regiones del mapa químico es la casilla N75 del Sistema periódico, ocupada por el renio, el más “joven” de los elementos en cuanto al año de su descubrimiento. De todos los elementos que se encuentran en la corteza de la Tierra, el último que salió del incógnito fue el renio. Su símbolo (Re) sólo en el 1925 pasó a ocupar en la casilla N75 el lugar del signo de interrogación. En lo sucesivo, el Sistema periódico se iría completando a cuenta de elementos obtenidos por vía artificial.
La causa de que el renio tardara tanto tiempo en ser inscrito como “inquilino permanente” del Sistema periódico fue su extraordinaria rareza. La cantidad total de este elemento en la corteza terrestre constituye una milmillonésima del peso de ésta. Otros metales, tales como el oro y el platino, se hallan contenidos en ella en cantidades cinco veces mayores.
De ahí que quizás ningún otro elemento “trajese tan de cabeza” a los químicos que andaban a la caza de nuevos elementos, como ese metal argentino-mate, y que a primera vista no tiene nada de particular, a no ser su elevada densidad.
El número de exploradores que se dedicaron a la búsqueda del “hombre de las nieves”, no es nada en comparación con el de los investigadores que se consagraron a la búsqueda de dicho elemento.
K. G. Paustovski, en uno de sus ensayos literarios (“El acosamiento de las plantas”), escribió: “La perseverancia de los científicos, según se sabe, es monstruosa, y puede sacar de sus casillas incluso a la persona más serena”. Pues bien, aquí ocurrió todo lo contrario. El enigma del elemento N75 hizo abandonar el campo a más de un investigador, y entre los que a pesar de todo prosiguieron la búsqueda no faltaron los que, tarde o temprano, empezaron a murmurar del intratable y todavía desconocido habitante del apartamento N75.
En 1869 el elemento N75 fue aislado, al parecer, por Guiar, quien le dio el nombre de “uralio”. Pero poco después el químico renunció a sus conclusiones, con lo que eludió la triste suerte del químico Rose, cuya gozosa noticia de haber descubierto el elemento pelopio en 1846 fue refutada por varios investigadores a la vez. La misma suerte corrieron el niponio, descrito en 1906 por Ogawa, el lucio de Barriera, anunciado en 1896, y muchos otros elementos.
Pero a pesar de todo, en uno de los casos, por lo visto no hubo error. El 27 de junio de 1877 el químico ruso S. Kern publicó la noticia de que en las substancias residuales del beneficio del platino había hallado un nuevo elemento, para el que proponía el nombre de “davium”, en homenaje al famoso químico inglés H. Davy. La determinación del peso atómico y de las propiedades del “davium” indicó que dicho elemento debía ocupar en el Sistema periódico el lugar que Mendeleiev había destinado al elemento llamado por él dvimanganeso. Veinte años después, el químico norteamericano Mallet repitió el experimento de Kern, pero no pudo aislar de los residuos del platino el elemento separado por el investigador ruso. Bien porque la mena de platino tuviera otra procedencia, o bien porque Mallet fuera todavía un químico poco experto, lo cierto es que el descubrimiento del “davium” no obtuvo confirmación. Kern no replicó nada: por lo visto había fallecido ya para entonces; y como a los críticos se les da siempre crédito, en la casilla N75 se volvió a entronizar el signo de interrogación.