Выбрать главу

В течение двух тысячелетий, начиная с пифагорейцев и платоников, все знание о небесных телах было поделено на две части: количественную и качественную. Астрономия, космология и небесная физика представляли количественную часть, а вот знания земного мира (земная физика) были исключительно качественными (физика, унаследованная от Аристотеля). В XVI и XVII веках, с укреплением новой концепции природной механики, основанной на экспериментальной практике и развитии математики, положение вещей начало меняться.

Как и другие ученые, Исаак Ньютон искал возможность описать как можно больше природных феноменов ограниченным количеством математических законов. Он предложил математическую модель для описания траектории планет, наблюдаемых Коперником (1473-1543), Тихо Браге (1546-1601) и Кеплером (1571-1630), а также для перемещения небесных тел («тяжелые тела»), изученных Галилеем (1564-1642). Ньютон описал законы движения в виде математической формулы, устанавливающей связь между физическими величинами и скоростью их изменения, — он говорил о расстоянии, пройденном подвижным объектом, с учетом его скорости и его скорости с учетом ускорения. Законы физики нашли выражение в виде дифференциальных уравнений, которые, в своих производных, использовались для измерения изменений.

ЛЕОНАРД ЭЙЛЕР

«Читайте, читайте Эйлера, он — наш общий учитель». Эти слова Лапласа воздают должное Леонарду Эйлеру (1707- 1783). Сын пастора-кальвиниста, этот швейцарский математик, без сомнения, был самым продуктивным среди своих современников. Его работы лежат в основе сотен математических трудов и многочисленных учебников по исчислению, в которых и сегодня мы увидим введенное Эйлером определение функций с помощью f(x). Часто говорят, и не без оснований, что все учебники по математике являются копиями Эйлера или копиями копий Эйлера.

Ученый легко совершал довольно сложные математические расчеты. Несмотря на полную слепоту, которой он страдал в течение последних 17 лет жизни, Эйлер продолжил плодотворно работать в прежнем ритме благодаря своей исключительной памяти (например, он знал наизусть «Энеиду»).

Заурядный философ

Зато талант Эйлера в философии был скорее посредственным. Вольтер высмеял его «Письма к немецкой принцессе о разных физических и философских материях» перед Фридрихом II Великим, хотя этот сборник представлял собой своеобразную научно-популярную энциклопедию. Однако насмешки Вольтера не уменьшили страсть Эйлера к философским дискуссиям. Однажды он в присутствии Екатерины II оскорбил Дени Дидро, обратившись к нему следующим образом: «Месье,

(а + bn)/n = x,

следовательно, Бог существует. Возразите!» Если верить этому сомнительному анекдоту, Дидро не стал вступать в спор и покинул зал. Эйлер работал в Берлинской академии и Академии наук в Санкт-Петербурге, он прожил счастливую семейную жизнь, окруженный своими тремя детьми. Седьмого сентября 1783 года, после обсуждения ежедневных забот, швейцарский гений «перестал считать и жить», как выразился Кондорсе. Его уравнение считается самым прекрасным в истории математики, поскольку оно объединяет ее фундаментальные числа: е+1 = 0.

В дифференциальном уравнении главной неизвестной является скорость изменения величины, то есть его дифференциал, или производная. Дифференциалы как производные одной величины представляют изменение значения функции — увеличение, уменьшение, постоянство. Например, ускорение описывает изменение скорости движения, так как это частное дифференциалов скорости и времени. Иными словами, ускорение является производной скорости по отношению ко времени, и исходя из этого оно представляет собой изменение скорости по отношению ко времени.

Ньютон — одновременно с Готфридом Вильгельмом Лейбницем (1646-1716) — придумал дифференциальное исчисление (или теорию флюксий, как он его называл) и применил его к своим исчислениям. Итак, чтобы представить законы астрономии и механики в знаменитой работе Philosophiae naturalis principia mathematica {«Математические начала натуральной философии», 1687 год), Ньютон сохранил терминологию, унаследованную от Евклида и греков. Для расчета производной он определил касательные к кривой и вычислил интеграл (операция, обратная дифференцированию), чтобы определить площадь поверхности под кривой. Таким образом, если вы откроете «Начала» Ньютона, то, вероятно, будете разочарованы: это произведение, считающееся символическим по отношению к научной революции, практически не поддается расшифровке. В действительности именно Лейбницу мы обязаны символами, обозначающими слова «дифференцировать» (δ) и «интегрировать» (∫), а также правилами, регулирующими эту нотацию, хорошо известными каждому студенту математического факультета.