Выбрать главу

Описание подробностей распространения «Начал» потребовало бы много места. Отметим лишь, что идеи Ньютона привлекали все больше и больше последователей благодаря труду таких авторов, как Пьер Вариньон (1654-1722), который был другом Лейбница и преподавателем в Париже. Ученые стремились сформулировать в виде уравнений механические концепции и геометрические построения Ньютона, используя для этого такой инструмент, как дифференциальное исчисление в версии Лейбница, то есть исчисление бесконечно малых. Эти авторы оказали Ньютону огромную услугу, предложив для его теории математически вразумительную форму. Одновременно такие философы, как Вольтер и его подруга маркиза Эмили дю Шатле (1706-1749), успешно содействовали тому, чтобы донести труды Ньютона до широкой европейской публики, далекой от науки.

Законы Ньютона в конце концов нашли свое выражение с помощью аналитического языка дифференциальных уравнений. Уравнения пришли на смену графикам. Любопытно, что заботу переводить натуральную философию Ньютона с геометрического языка, используемого в это время, на новый аналитический язык (в известном нам виде) взяли на себя не британские математики. У истоков этого начинания стояли ученые с континента, в частности из Парижа, Берлина и Санкт-Петербурга. Соперничество Ньютона и Лейбница относительно авторства метода исчисления переросло в антипатию и открытую вражду между их сторонниками и проложило пропасть между островными и континентальными математиками. Первые последователи Ньютона упорно добивались использования исключительно геометрических методов, что впоследствии вызвало некоторое замедление развития британской науки.

Постепенный переход от геометрической механики Ньютона к аналитическим методам стал возможен только благодаря работе целого поколения математиков континентальной Европы, особенно Эйлера и Жозефа Луи Лагранжа. Это была великая математическая эпоха, в течение которой анализ стал основной дисциплиной: дифференциальное исчисление и интегралы, теория дифференциальных уравнений испытали резкий подъем.

Достоинство хорошо составленного (математического) языка в том, чтобы его упрощенное определение часто становилось источником глубоких теорий.

Пьер-Симон де Лаплас

НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

Самым известным дифференциальным уравнением, безусловно, является то, которым мы обязаны Исааку Ньютону (1642-1727): «Сила равна массе, умноженной на ускорение».

Это записывается как F= m ∙ а, где

a = dv/dt

(ускорение — это частное дифференциалов скорости и времени, то есть производная скорости по времени).

Но удивительно, что сам Ньютон никогда не приводил этого уравнения. Его второй закон имеет более общую формулировку: «Изменение количества движения пропорционально приложенной движущей силе». В современном виде это:

F = d/dt(m ∙ v).

Любая сила, воздействующая на тело, вызывает изменение движения. Предположим, что масса тела постоянна (тогда можно извлечь m из производной), мы находим известное уравнение: F= m ∙ а. Эта формула в первый раз появилась в математическом трактате под названием Phoronomia («Форономия»), опубликованном в 1716 году Якобом Германом (1678- 1733), который опирался на практичный способ записи Лейбница. Формула получила известность благодаря Эйлеру, который привел ее в своем труде«Механика, или Наука о движении, изложенная аналитически» (1736). В течение большей половины XVIII века математики использовали более общую формулу, предложенную д'Аламбером в «Трактате о динамике» (1743), которая, естественно, носит имя ученого, — принцип д'Аламбера.

Аналитическая механика представляла собой значительный прогресс по сравнению с механикой Ньютона. Чем дальше математика отходила от геометрических методов к аналитическим, тем возможнее было изучить физические феномены с помощью дифференциальных уравнений, их описывающих.