Выбрать главу

В определении фирна нет однозначной трактовки. Американский гляциолог М. Майер склоняется к признанию за фирном состояния, которое становится непроницаемым для просачивающейся влаги. Этот уровень достигается при плотности 0,55. Часто для умеренных ледников фирном считается перелетовавший снег, еще не достигший полной водонепроницаемости. Для полярных ледников трактовка фирна может быть несколько иной.

Физические свойства снега и фирна важны в нескольких аспектах. Прежде всего снег является плохим проводником тепла и потому при большой мощности защищает почву от промерзания. В то же время снег может (одержать большое количество воды: до 40% общего объема, или до 75% общего веса. В водонасыщенном состоянии снег становится источником лавин, оказывающих немалое воздействие на рельеф и всю природу гор. При низких температурах снег становится упругим, а ближе к 0° С — вязким. Соответственно снег приобретает способность сползать по уклону, если при трении выделяется скрытое тепло; тепло оплавляет концы кристаллов, и происходит движение оставшихся зерен снега.

Превращение фирна в лед — очень медленный процесс, для которого требуется разное время в зависимости от конкретных условий. Например, на леднике Сьюорд на Аляске этот процесс требует трех—пяти лет и завершается на глубине около 13 м, а на альпийском леднике Клариденфернер через 12 лет все еще была различима структура фирна, и полное превращение его в лед происходит за 25—40 лет. В Гренландии, где снегонакопление меньше, этот процесс идет медленнее, занимая не менее 125 лет, и заканчивается на глубинах свыше 60 м.

С превращением фирна в лед кристаллическая структура изменяется, при этом размеры кристаллов заметно увеличиваются и в отдельных случаях достигают 20—30 см в поперечнике. Одновременно весь воздух собирается в отдельные пузырьки. Именно с этого момента можно считать, что фирн превратился в ледниковый лед с плотностью 0,80—0,85 г/см3. Впоследствии по мере накопления все новых порций снега нагрузка на лед возрастает и соответственно уменьшаются размеры содержащихся в нем воздушных пузырьков. В конечном итоге они становятся невидимыми и лед приобретает прозрачность, его плотность достигает 0,88—0,91 г/см3. На альпийском леднике Мер-де-Глас для достижения такого состояния требуется 50 лет.

Все эти преобразования наблюдаются в природе. Представим себе, что мы вошли в глубокий туннель, пропиленный рекой сквозь многолетний снежник. В стенках туннеля легко различить чередование рыхлых и плотных слоев, что характерно для фирновых толщ. В более плотных слоях процесс перекристаллизации снега зашел наиболее далеко.

Ледники сложены поликристаллическим льдом, структура которого унаследована от снежинок, некогда выпавших в горах. Следовательно, ледниковый лед является метаморфической породой, и в его строении четко выражена слоистость, указывающая, что исходный материал образовался при повторных снегопадах. Сезонная слоистость подчеркивается прослоями пыли, скапливающейся на поверхности ледника между снегопадами.

Если исследовать прослои пыли под микроскопом, то можно обнаружить там зерна пыльцы и споры растений, занесенные ветром на ледник. Поскольку основная масса пыльцы продуцируется весной и ранним летом, слои, обогащенные пыльцой, приобретают маркирующее значение для сезонной дифференциации снежно-фирновых толщ и позволяют подсчитать снегонакопление на горных ледниках. Такие исследования успешно проводились на ледниках Эльбруса и Полярного Урала.

Для стратификации снежно-фирновых толщ нередко применяется анализ минеральных частиц из прослоев пыли, причем наиболее эффективным оказалась фиксация содержания радиоактивных изотопов 90Sr и 137Cs. В качестве одного из примеров сошлемся на работы экспедиции Института географии АН СССР на Шпицбергене. Анализ содержания изотопов в ледяном керне, взятом на ледоразделе ледниковой системы Грёнфьорд — Фритьоф, показал, что за период 1951—1975 гг. скорость снегонакопления составляла 75 см/год.

Датируют сезонные слои снега и льда обычно вместе с их кристаллографическими исследованиями, что позволяет глубоко разобраться в процессах превращения снега в лед. Поскольку такое превращение зависит от климатических факторов, вполне естественно, что на разных высотных ступенях ледников эти процессы проявляются неодинаково. На ледниках удается выделить несколько зон льдообразования, заметно различающихся по характеру гляциологических процессов. Самая холодная из них — рекристаллизационная — занимает вершины наиболее высоких гор, где летние температуры остаются отрицательными. Это исключает возможность образования талой воды. Для превращения снега в лед в данных условиях требуется накопление больших масс твердых осадков и длительное время. Классические примеры рекристаллизационной зоны — внутренние области районов современного покровного оледенения Антарктиды и Гренландии. В общем случае к этой зоне примыкает режеляционно-рекристаллизационная, иногда именуемая зоной просачивания. Климат ее несколько мягче. Летом здесь возможно кратковременное таяние поверхностного слоя снега с образованием талой воды, при последующем ее замерзании появляются корочки режеляционного льда.