Выбрать главу

Медленные устройства

«Медленное устройство» является в сущности терминалом или почти всяким другим устройством, кроме обычного файла. В этом случае read() могла завершиться с ошибкой EINTR, лишь если не было передано никаких данных, когда появился сигнал. В противном случае системный вызов был бы запущен повторно, и read() возвратилась бы нормально.

Обычные файлы

Системный вызов был бы запущен повторно В этом случае read() вернулась бы нормально; возвращенное значение могло быть либо числом запрошенных байтов, либо числом действительно прочитанных байтов (как в случае чтения вблизи конца файла).

Поведение BSD несомненно полезно; вы всегда можете сказать, сколько данных было прочитано.

Поведение POSIX сходно, но не идентично первоначальному поведению BSD. POSIX указывает, что read()[108] завершается с ошибкой EINTR лишь в случае появления сигнала до начала перемещения данных. Хотя POSIX ничего не говорит о «медленных устройствах», на практике это условие проявляется именно на них.

В противном случае, если сигнал прерывает частично выполненную read(), возвращенное значение является числом уже прочитанных байтов. По этой причине (а также для возможности обработки коротких файлов) всегда следует проверять возвращаемое read() значение и никогда не предполагать, что прочитано все запрошенное количество байтов. (Функция POSIX API sigaction(), описанная позже, позволяет при желании получить поведение повторно вызываемых системных вызовов BSD.)

10.4.4.1. Пример: GNU Coreutils safe_read() и safe_write()

Для обработки случая EINTR в традиционных системах GNU Coreutils использует две функции, safe_read() и safe_write(). Код несколько запутан из-за того, что один и тот же файл за счет включения #include и макросов реализует обе функции. Из файла lib/safe-read.c в дистрибутиве Coreutils:

1  /* Интерфейс read и write для .повторных запусков после прерываний.

2     Copyright (С) 1993, 1994, 1998, 2002 Free Software Foundation, Inc.

   /* ... куча шаблонного материала опущена... */

56

57 #ifdef SAFE_WRITE

58 # include "safe-write.h"

59 # define safe_rw safe_write /* Создание safe_write() */

60 # define rw write /* Использование системного вызова write() */

61 #else

62 # include "safe-read.h"

63 # define safe_rw safe_read /* Создание safe_read() */

64 # define rw read /* Использование системного вызова read() */

65 # undef const

66 # define const /* пусто */

67 #endif

68

69 /* Прочесть (записать) вплоть до COUNT байтов в BUF из(в) дескриптора FD, повторно запуская вызов при

70 прерывании. Вернуть число действительно прочитанных (записанных) байтов, 0 для EOF

71 или в случае ошибки SAFE_READ_ERROR(SAFE_WRITE_ERROR). */

72 size_t

73 safe_rw(int fd, void const *buf, size_t count)

74 {

75  ssize_t result;

76

77  /* POSIX ограничивает COUNT значением SSIZE_MAX, но мы еще больше ограничиваем его, требуя,

78  чтобы COUNT <= INT_MAX, для избежания ошибки в Tru64 5.1.

79  При уменьшении COUNT сохраняйте указатель файла выровненным по размеру блока.

80  Обратите внимание, что read (write) может быть успешным в любом случае, даже если прочитано (записано)

81  менее COUNT байтов, поэтому вызывающий должен быть готов обработать

82  частичные результаты. */

83  if (count > INT_MAX)

84   count = INT_MAX & -8191;

85

86  do

87  {

88   result = rw(fd, buf, count);

89  }

90  while (result < 0 && IS_EINTR(errno));

91

92  return (size_t) result;

93 }

Строки 57–67 обрабатывают определения, создавая соответствующим образом safe_read() и safe_write() (см. ниже safe_write.c).

Строки 77–84 указывают на разновидность осложнений, возникающих при чтении. Здесь один особый вариант Unix не может обработать значения, превышающие INT_MAX, поэтому строки 83–84 выполняют сразу две операции: уменьшают значение числа, чтобы оно не превышало INT_MAX, и сохраняют его кратным 8192. Последняя операция служит эффективности дисковых операций: выполнение ввода/вывода с кратным основному размеру дискового блока объемом данных более эффективно, чем со случайными размерами данных. Как отмечено в комментарии, код сохраняет семантику read() и write(), где возвращенное число байтов может быть меньше затребованного.

Обратите внимание, что параметр count может и в самом деле быть больше INT_MAX, поскольку count представляет тип size_t, который является беззнаковым (unsigned). INT_MAX является чистым int, который на всех современных системах является знаковым.

Строки 86–90 представляют действительный цикл, повторно осуществляющий операцию, пока она завершается ошибкой EINTR. Макрос IS_EINTR() не показан, но он обрабатывает случай в системах, на которых EINTR не определен. (Должен быть по крайней мере один такой случай, иначе код не будет возиться с установкой макроса; возможно, это было сделано для эмуляции Unix или POSIX в не-Unix системе.) Вот safe_write.c:

1  /* Интерфейс write для повторного запуска после прерываний.

2     Copyright (С) 2002 Free Software Foundation, Inc.

   /* ...куча шаблонного материала опущена... */

17

18 #define SAFE_WRITE

19 #include "safe-read.с"

В строке 18 #define определяет SAFE_WRITE; это связано со строками 57–60 в safe_read.с.

10.4.4.2. Только GLIBC: TEMP_FAILURE_RETRY()

Файл <unistd.h> GLIBC определяет макрос TEMP_FAILURE_RETRY(), который вы можете использовать для инкапсулирования любого системного вызова, который может при неудачном вызове установить errno в EINTR. Его «объявление» следующее:

#include <unistd.h> /* GLIBC */

long int TEMP_FAILURE_RETRY(expression);

Вот определение макроса:

/* Оценить EXPRESSION и повторять, пока оно возвращает -1 с 'errno',

    установленным в EINTR. */

# define TEMP_FAILURE_RETRY(expression) \

 (__extension__ \

  ({ long int __result; \

   do __result = (long int)(expression); \

   while (__result == -1L && errno == EINTR); \

вернуться

108

Хотя мы описываем read(), эти правила применяются ко всем системным вызовам, которые могут завершиться с ошибкой EINTR, как, например, семейство функций wait()Примеч. автора.