Наконец, переменная rflg помогает реализовать опцию -r, которая меняет порядок сортировки. Она инициализируется 1 (строка 30). Если -r используется, rflg устанавливается в -1 (строки 89–91).
Следующий псевдокод описывает логику compar(); номера строк на левой границе соответствуют номерам строк ls.c:
407 if ls должна прочесть каталоги # dflg == 0
408 if p1 аргумент командной строки и p1 каталог
409 if p2 не аргумент командной строки и не каталог
410 return 1 # первый идет после второго
else
перейти на тест времени
411 else
# p1 не каталог командной строки
412 if p2 аргумент командной строки и каталог
413 return -1 # первый идет перед вторым
else
перейти на тест времени
416 if сортировка основана на времени # tflg равно true
# сравнить времена:
417 if время p2 равно времени p1
418 return 0
419 if время p2 > времени p1
420 return значение rflg (положительное или отрицательное)
# время p2 < времени p1
421 return противоположное rflg значение (положительное или отрицательное)
423 Умножить rflg на результат strcmp()
424 для двух имен и вернуть результат
Аргументы strcmp() в строках 423–424 выглядят сбивающими с толку. В зависимости от того, было ли имя файла указано в командной строке или было прочитано из каталога, должны использоваться различные члены объединения ln в struct lbuf.
7.3. Резюме
• V7 ls является сравнительно небольшой программой, хотя она затрагивает многие фундаментальные аспекты программирования Unix — файловый ввод-вывод, вспомогательные данные файлов, содержание каталогов, пользователи и группы, значения времени и даты, сортировку и динамическое управление памятью.
• Наиболее примечательным внешним различием между V7 ls и современной ls является трактовка опций -а и -l. У версии V7 значительно меньше опций, чем у современных версий; заметным недостатком является отсутствие рекурсивной опции -R.
• Управление flist является чистым способом использования ограниченной памяти архитектуры PDP-11, предоставляя в то же время как можно больше сведений, struct lbuf хорошо извлекает нужные сведения из struct stat; это значительно упрощает код. Код для вывода девяти битов доступа компактен и элегантен.
• Некоторые части ls используют удивительно маленькие лимиты, такие, как верхняя граница числа файлов в 1024 или размер буфера в makename() в 100.
Упражнения
1. Рассмотрите функцию getname(). Что случится, если запрошенный ID равен 256, а в /etc/passwd есть следующие две строки, в этом порядке:
joe:xyzzy:2160:10:Joe User:/usr/joe:/bin/sh
jane:zzyxx:216:12:Jane User:/usr/jane:/bin/sh
2. Рассмотрите функцию makename(). Может ли она использовать sprintf() для составления имени? Почему может или почему нет?
3. Являются ли строки 319–320 в readdir() действительно необходимыми?
4. Возьмите программу stat, которую вы написали в качестве упражнения в «Упражнениях» к главе 6. Добавьте функцию nblock() из V7 ls и выведите результаты вместе с полем st_blocks из struct stat. Добавьте видимый маркер, когда они различны.
5. Как бы вы оценили V7 ls по ее использованию malloc()? (Подсказка: как часто вызывается free()? Где ее следовало бы вызвать?)
6. Как вы оценили бы ясность кода V7 ls? (Подсказка: сколько там комментариев?)
7. Очертите шаги, которые нужно было бы сделать, чтобы адаптировать V7 ls для современных систем.
Глава 8
Файловые системы и обходы каталогов
Данная глава завершает обсуждение файловых систем и каталогов Linux (и Unix). Сначала мы опишем, как к логическому пространству имен файловой системы добавляется (и удаляется) раздел диска, содержащий файловую систему, таким образом, что в общем пользователю не нужно ни знать, ни заботиться о месте физического размещения файла, вместе с API для работы с файловыми системами
Затем мы опишем, как перемещаться по иерархическому пространству имен файлов, как получать полный путь текущего рабочего каталога и как без труда обрабатывать произвольные иерархии (деревья) каталогов, используя функцию nftw(). Наконец, мы опишем специализированный, но важный системный вызов chroot().
8.1. Монтирование и демонтирование файловых систем
Унифицированное иерархическое пространство имен файлов является большим достоинством дизайна Linux/Unix. Данный раздел рассматривает, как административные файлы, команды и операционная система объединяются для построения пространства имен из отдельных физических устройств, содержащих данные и служебные данные файлов.
8.1.1. Обзор основ
В главе 5 «Каталоги и служебные данные файлов», были представлены индексы для служебных данных файлов и описано, как элементы каталогов связывают имена файлов с индексами В ней также были описаны разделы и файловые системы, и вы видели, что прямые ссылки ограничены работой в пределах одной файловой системы, поскольку каталоги содержат лишь номера индексов, а последние не уникальны среди всего набора использующихся файловых систем.
Помимо индексов и блоков данных, файловые системы содержат также одну или более копий суперблока. Это специальный дисковый блок, который описывает файловую систему; его сведения обновляются по мере изменений в самой файловой системе. Например, он содержит число свободных и используемых индексов, свободных и используемых блоков и другие сведения. Он включает также магическое число: специальное уникальное значение в специальном месте, которое идентифицирует тип файловой системы (Вскоре мы увидим, насколько это важно.)
Обеспечение доступа к разделу, содержащему файловую систему, называется монтированием (mounting) файловой системы. Удаление файловой системы из использования называется, что неудивительно, демонтированием (unmounting) файловой системы.
Эти две задачи выполняются программами mount и umount [так], названными по соответствующим системным вызовам. У системного вызова mount() каждой системы Unix свой, отличный интерфейс. Поскольку монтирование и демонтирование считаются проблемой реализации, POSIX намеренно не стандартизует эти системные вызовы
Вы монтируете файловую систему в каталог; такой каталог называется точкой монтирования файловой системы. По соглашению, каталог должен быть пустым, но ничто не принуждает к этому. Однако, если точка монтирования не пуста, все ее содержимое становится , пока в ней не смонтирована файловая система[76].
76
GNU/Linux и Solaris дают возможность монтировать один файл поверх другого; это продвинутое использование, которое мы не будем обсуждать —