Такие законы представляют собой тождественно истинные высказывания, т.е. высказывания, остающиеся истинными при любых значениях входящих в них простых высказываний. В справедливости этого утверждения можно убедиться опять-таки с помощью таблиц истинности. В принципе все тождественно истинные высказывания являются законами логики (или исчисления высказываний). Мы перечислим только основные из них.
• Закон тождества: если х, то х, т.е. х → х.
• Закон упрощения: если х и у, то х, т.е. х∧у→х. То же самое относится к другому конъюнктивному члену: х∧у→ у
• Закон эквивалентности: если из х следует у, а из у следует х, тогда высказывания эквивалентны, т. е. x ↔ у.
• Закон гипотетического силлогизма: если из х следует у, а из у следует z, то из х следует z, т.е.
((x → y) ∧ (y → z)) → (x → z)
• Закон двойного отрицания: если из х следует не-х, то отрицание последнего приводит к первоначальному высказыванию:
¬ (¬x) ↔ x
• Законы О. де Моргана дают возможность переходить от конъюнкции к дизъюнкции и, наоборот, от дизъюнкции к конъюнкции. Они служат удобным средством для преобразования высказываний:
а) отрицание конъюнкции высказываний эквивалентно дизъюнкции из отрицаний конъюнктивных членов:
¬ (x ∧ y) ↔ (¬x ∨ ¬y)
б) отрицание дизъюнкции эквивалентно конъюнкции отрицаемых членов дизъюнкции:
¬ (x ∨ y) ↔ (¬x ∧ ¬y)
• Закон "поглощения": конъюнкция или дизъюнкция одинаковых высказываний эквивалентна самому высказыванию, т.е. повторяющийся член "поглощается":
(x ∧x) → x и (x ∨ x) → x.
• Коммутативные законы для конъюнкции и дизъюнкции разрешают перестановку их членов:
(x ∧ y) ↔ (x ∧ y) и (x ∨ y) ↔ (y ∨ x).
• Ассоциативные законы для конъюнкции и дизъюнкции позволяют по-разному сочетать члены, т.е. по-иному расставлять скобки:
x ∧ (y ∧ z) ( ↔ x ∧ y) ∧ z или x ∨ (y ∨ z) ( ↔ x ∨ y) ∨ z.
• Закон контрапозиции разрешает прямую импликацию заменять обратной, в результате чего антецедент первой заменяется отрицанием консеквента второй, а ее консеквент - отрицанием антецедента. Проще говоря, при контрапозиции происходит перестановка членов импликации или их контрапозиция, но они берутся с отрицаниями:
(x → y) (¬ ↔ y → ¬x)
• Закон противоречия: два противоречащих друг другу высказывания, т.е. высказывание х и его отрицание не-х, не могут быть вместе истинными:
(x ∧ ¬x)
Поскольку этот закон запрещает противоречия в рассуждении, то его часто называют также законом непротиворечия, и последнее более правильно.
• Закон исключения третьего: из двух противоречащих друг другу высказываний только одно является истинным. Тогда второе будет ложным и никакой третьей возможности не существует
x ∨ ¬x
Все эти законы можно непосредственно проверить с помощью таблиц истинности, но их желательно запомнить, чтобы каждый раз не обращаться к построению таблиц. Можно было бы привести и другие законы, которые иногда применяются в рассуждениях, но они играют значительно меньшую роль. В принципе таких законов может быть бесчисленное множество. Все они должны содержать только переменные и логические постоянные и быть истинными в любой области (универсуме) рассуждения. При этом предполагается, что данная область непустая. В логике высказываний к постоянным относят логические коннекторы (связки), с помощью которых образуются сложные высказывания, а переменными являются простые высказывания.
Все перечисленные выше законы служат основой для правильных рассуждений, ибо опираясь на них, никогда нельзя получить ложного заключения из истинных посылок. Поэтому любое последовательное, непротиворечивое и правильное мышление всегда осуществляется в соответствии с законами логики, сознаем мы это или нет. В то же время среди перечисленных законов необходимо выделить самые основные, которые обычно называются законами логики. К ним относятся законы тождества, противоречия и исключенного третьего, о которых пойдет речь в гл.6.
Все законы исчисления высказываний, как в этом можно убедиться с помощью таблиц истинности, являются тождественно истинными (общезначимыми формулами). Какие бы истинностные значения не придавались входящим в них высказываниям, в конечном счете формула оказывается всегда истинной. Вот почему эти законы явно или неявно применяются в любом рассуждении, ибо именно с их помощью становится возможным преобразовать и упрощать имеющуюся информацию и приходить к определенным заключениям. Поясним это на примере закона контрапозиции. Если нам известно, что "треугольник х равнобедренный", то отсюда следует высказывание у, утверждающее, что "углы при его основании равны". Но если эти углы не равны, то по закону контрапозиции можно заключить, что "треугольник не является равнобедренным", т.е. (х → у) → (¬y → ¬x). Таким образом, этот вывод мы получаем чисто логически, не прибегая, например, к доказательству методом от противного.