Гибридизации нуклеиновых кислот используется для мечения ДНК и РНК с помощью видимых в микроскопе маркеров. При этом гибридизация используется для мечения особых последовательностей ДНК и РНК. Если РНК являясь одноцепотчатой доступна для мечения сразу, то для того, чтобы сделать ДНК доступной для гибридизации и мечения надо ее нагреть, чтобы двойная цепь ДНК разошлась на одиночные цепочки.
Для этого ученые синтезируют короткие цепочки ДНК или РНК, комплементарные гену или его мРНК. Затем берутся образцы тканей или органов и готовятся гистологические или электронно-микроскопические срезы. Затем срезы нагреваются.
При этом цепи ДНК из-за резкого увеличения подвижности молекул разрывают водородные связи и расплетаются, превращаясь в одиночные. Они становятся доступными для склеивания с короткими одиночными цепями ДНК, добавляемых к срезу извне. Если срез охладить после добавления, то короткие цепи конкурируют с комплементарными цепями ДНК за места склеивания и гораздо успешнее, чем длинные молекулы, приклеиваются (интерферируют или подвергаются гибридизации) к комплементарным участкам расплетенной молекулы ДНК. Короткие цепи имеют тенденцию приклеиваться к комплементарным участкам. Если участки менее комплементарны, чем длинная комплементарная нить ДНК, то короткие цепи хуже склеиваются и проигрывают соревнование за места склеивания.
Метод осуществляется таким образом — сначала срезы нагревают до температуры плавления ДНК (это температура, при которой происходит отклеивание двух нитей ДНК друг от друга, обычно около 90 °C), затем при чуть более низкой температуре добавляют наш зонд в виде короткой одиночной цепи ДНК, которая мечена либо с помощью внедрения в молекулу радиоактивного изотопа либо путем химического пришивания к цепи нуклеотидов вещества, которое испускает под воздействием света с короткой длиной волны фотоны света с более длинной волной (возникает так называемая флюоресценция). Измеряя радиоактивность в экспериментальных и контрольных образцах, подготовленных абсолютно одинаково, можно судить количественно о том, какие гены есть в данных клетках. Если вместо короткой нити ДНК использовать короткую комлементарную и меченную нить РНК, то можно измерить уровень транскрипции с данного гена.
Введение метода ДНК-ДНК гибридизации позволило доказать, что микоплазмы (самые примитивные бактерии) являются самостоятельной группой, получившей название класс Mollicutes (216).
II.22. ИНТЕРФЕРЕНЦИЯ РНК
Не надо забывать, что у живых организмов идёт постоянный обмен веществ. Поэтому надо знать не только механизм синтеза молекул, но и механизмы их последующей обработки (химической модификации и упаковки в трехмерном пространстве и разрушения), иначе, если будет излишек синтеза, но не будет разрушения, то будет избыток данной молекулы. Двойные спирали РНК существуют в виде рРНК, сРНК, тРНК. Поэтому в клетке должны быть механизмы для их разрушения, так как идёт постоянный обмен веществ и клетка должна постоянно приспосабливаться к изменениям внешней среды.
Имеющиеся в клетке белковые машины, которые клетка использовала и использует для разрушения двойных цепей РНК, были с успехом применены для целей изучения функции белков. Один из первых примеров РНК-интерференции был обнаружен при получении трансгенных растений петунии. Явление РНК-интерференции впервые было обнаружено у круглого червя-нематоды Caenorhabditis elegans (кто не знает, сообщаю, что этот червь относится к категории глист, то есть, червей, живущих в кишечнике у млекопитающих).
В 2006 году Э. Файр и К. Мелло, первый и последний автор статьи, опубликованной в журнале Природа (Nature^ 1998 г., получили Нобелевскую премию в области физиологии и медицины за работы по изучению РНК-интерференции у нематоды C. elegans, опубликованные в 1998 году. Они вводили в клетки одиночные и двойные цепи РНК, комплементарные мНК одного из генов. При введение двойной цепи РНК происходило блокирование специфического, гомологичного ей по нуклеотидной последовательности, гена. РНК-интерференция обнаружена почти во всех эукариотических организмах (за исключением почкующихся дрожжей Saccharomyces cerevisiae).
Сейчас для удаления продуктов гена из клеток, выращиваемых в пробирке, используют введение в цитоплазму или непосредственно в ядро коротких одиночных или двойных молекул РНК, комплементарным, особым образом отобранным участкам мРНК, которая синтезируется основе выбранного гена. Попадание этих фрагментов ведет к тому, что двойные разделяются на одиночные цепи с помощью белковой машины РИСК, а одиночные цепи действуют непосредственно. Полученные после разделения в РИСКе или непосредственно введенные в цитоплазму цепочки РНК, содержащие 20–25 нуклеотидов, приклеиваются (интерферируют) к комплементарным зонам мРНК производной от выбранного гена (139, 191).