Выбрать главу

Узнав, что электроны описываются в виде волн, вы вправе спросить: «В виде волн чего?». Это сложный вопрос. Одни считают, что этот вопрос не имеет смысла, другие — что существует некое «электронное поле», пронизывающее всё пространство-время, а электроны представляют собой возбуждения этого поля. Электронное поле аналогично фортепианной струне, а электроны — возникающим на ней колебаниям.

Волны не всегда заперты в маленькой области пространства типа внутренности атома. Например, морские волны путешествуют многие километры, прежде чем разбиться о прибрежные скалы. Примером путешествующих квантово-механических волн являются, в частности, фотоны. Но перед тем как мы углубимся в изучение фотонов, я должен остановиться на одной формальности, имеющей отношение к вещам, которые мы будем обсуждать в последующих главах. Говоря о частоте основного состояния электрона в атоме водорода, я упомянул о том, что это упрощённое описание. Чтобы пояснить, что именно упрощено, я напишу ещё одну формулу: E = hv, где E — это энергия, v — частота, а h — та самая постоянная Планка, которая уже появлялась ранее в формулировке принципа неопределённости. E = hv — замечательная формула, она объясняет нам, что, в сущности, представляет собой частота: это просто энергия в новом облике. Но вот беда: существуют различные виды энергии. Электрон обладает энергией покоя. Он также обладает кинетической энергией. И вдобавок он обладает энергией связи, необходимой для того, чтобы освободить электрон из атома. Какую из этих энергий следует использовать в формуле E = hv? Когда я говорил, что частота основного состояния электрона равна 3×1015 колебаний в секунду, я имел в виду кинетическую энергию плюс энергию связи, исключая энергию покоя. Но это весьма произвольное допущение. Я мог бы включить в общую энергию и энергию покоя, если бы почувствовал, что это необходимо. Это означает, что частота в квантовой механике имеет некоторую недоопределённость, а это выглядит нехорошо.

Классическое представление об атоме водорода: электрон обращается по орбите вокруг протона

Квантово-механическое представление электрона в виде стоячей волны. Волна не имеет определённого положения на орбите, но обладает определённой энергией и частотой

Вот как можно разрешить указанную трудность. Давайте зададимся вопросом: «Что происходит, когда электрон переходит с одного энергетического уровня на другой?». Если электрон перескакивает на более низкий энергетический уровень, он освобождается от избытка энергии путём испускания фотона. Энергия фотона равна разности энергий двух уровней: того, с которого электрон перескакивает, и того, на которой он перескакивает. Теперь неважно, учитываем мы энергию покоя электрона или нет, потому что нас интересует только разность между двумя энергетическими уровнями, в то время как энергия покоя электрона не изменяется и не входит в окончательный результат. Правильным использованием формулы E = hv будет приравнять E к энергии фотона. Тогда v будет означать частоту фотона, имеющую вполне определённое значение, уже без всяких неоднозначностей. Остаётся ответить на последний вопрос: «Что же означает частота фотона?». Этим мы сейчас и займёмся.

Фотон

На протяжении веков в физике бушевали споры о том, что такое свет: частицы или волны. Квантовая механика дала на это однозначный ответ: и то и другое.

Чтобы лучше понять волновые свойства света, представьте себе электрон, который решил позагорать под лазерным лучом. Лазер является высокостабильным, когерентным и мощным источником света. Ключевой момент в том, что когда электрон попадает в лазерный луч, электромагнитное поле начинает толкать его туда-сюда с некоторой частотой. Эта частота входит в уравнение E = hv. Видимый свет имеет частоту чуть меньше 1015 колебаний в секунду. Аналогия выглядит причудливой, но, возможно, лучше пояснит ситуацию более жизненный пример. Радиоволны — это то же самое, что и свет, только они имеют существенно более низкую частоту. Радиоволна FM-диапазона имеет частоту около 108 колебаний в секунду, или 108 герц. Одна из наших местных радиостанций, «Нью-Джерси 101,5», вещает на частоте 101,5 мегагерца. Один мегагерц — это миллион герц, или 106 герц. Таким образом, 100 мегагерц — это 108 герц. Следовательно, 101,5 мегагерц — это чуть больше 108 колебаний в секунду. FM-радиоприёмник сконструирован таким образом, что электроны внутри него могут колебаться с той же самой частотой. Когда вы настраиваете радиоприёмник, вы изменяете предпочтительную для электронов частоту колебаний внутри приёмника. И подобно нашему загорающему в лазерном луче электрону, электроны внутри приёмника «впитывают» омывающие приёмник радиоволны.