Выбрать главу

Вторая трудность заключается в том, что вычисления, выполняемые на основе теории струн, всего лишь похожи на вычисления, выполняемые на основе квантовой хромодинамики, но не тождественны. Теоретик должен выполнить определённую процедуру трансляции между одной и другой теорией, прежде чем он получит предсказание, которое можно проверить экспериментально. И на этом этапе трансляции имеет место некоторый произвол. Попытки выполнить эту процедуру трансляции честно приводят к разбросу предсказаний тормозного пути c-кварка в два раза, то есть расчёт, в зависимости от произвольных начальных предположений, либо соответствует результату эксперимента, либо отличается от него в два раза. То же относится и к расчёту вязкости.

Так что поводов открывать шампанское пока нет. Тем не менее даже согласие между теорией и экспериментом с погрешностью 50% — это огромный прорыв в высокоэнергетической физике. Пятнадцать лет назад, когда струнные теоретики трудились над дополнительными размерностями, а эксперименты по столкновениям тяжёлых ионов находились в стадии постройки детектора, никто из нас не знал даже, как подступиться к подобным расчётам. А сегодня мы расстраиваемся из-за какого-то двухкратного расхождения теории с экспериментом и думаем, как улучшить точность расчётов. Это большой прогресс.

Ранее я обмолвился о спорах, как правильно преобразовать процесс остановки тяжёлого кварка в процессы с участием струн и чёрных дыр. Это отнюдь не споры о потерянном где-то множителе 2, это споры о физической картине, которую следует использовать для описания тяжёлых кварков. Описанная мной картина содержала струнный хвост, который тащится за кварком и увязает другим концом в горизонте чёрной дыры. Конкурирующая картина содержит U-образные струны, причём нижняя часть «буквы U» чертит по горизонту чёрной дыры. За отсутствием лучшей терминологии я буду называть эти две картины «струнно-хвостовой» и «U-струнной». Преимущество последней в том, что она претендует на описание и обычных кварков, что очень хорошо, поскольку обычные кварки вылетают из коллайдеров в гораздо бо́льших количествах, чем тяжёлые, и их существенно легче изучать. U-струнная картина приводит к предсказаниям, которые, как и в случае струнно-хвостовой картины, либо соответствуют экспериментальным данным, либо отличаются от них в два раза. Причина заключается в так называемом факторе произвола: некоторые свободные параметры могут быть выбраны по-разному для струнно-хвостовой и для U-струнной картин. Причём сторонники каждой из картин выдвигают убедительные аргументы против конкурирующей. Этот спор непросто урегулировать: предмет спора слишком абстрактный, конкурирующие гипотезы отличаются незначительно, а согласие с экспериментальными данными ожидается лишь приблизительное. Тем не менее я бы отметил его как доброе предзнаменование: струнные теоретики вместо обсуждения абстрактных материй наконец-то занялись обсуждением достоинств и недостатков вычислений, которые можно хотя бы приближённо сравнить с экспериментальными данными.

Что дальше? Для исследований столкновений тяжёлых ионов ответ будет: «Чем больше, тем лучше». Чем больше расчётов сделают струнные теоретики, тем больше различных подходов к решению проблемы перевода четырёхмерной картины в пятимерную они смогут предложить. Цель их усилий — в разумном согласовании и последовательном сопоставлении пятимерных конструкций и экспериментально измеримых величин. Может случиться так, что вся программа исследований упрётся в бетонный блок посреди выбранной нами дороги и между теорией струн и реальным миром квантовой хромодинамики обнаружатся непримиримые противоречия. Пока этого, к счастью, не произошло, но существует опасность, что мы не сумеем выполнить ряд необходимых вычислений из-за технических трудностей.