Так родился знаменитый пифагорейский тезис: "Все вещи суть числа". Этот тезис, если забыть о его внутреннем содержании, а тем более если числа отождествлять с цифрами, многим представлялся попросту абсурдным. Далее, считая, что материальный мир состоит из чисел, т. е. из идей, пифагорейцы, сами того не сознавая, становились на позиции философского идеализма, и не случайно именно на почве пифагореизма возникло учение основоположника объективного идеализма в философии Платона. Наконец, интерес к числу часто носил у пифагорейцев религиозно-мистический характер[10]. Но всякое явление следует рассматривать в его историческом окружении "Идеалистическая мистификация чисел у пифагорейцев была следствием неразвитости науки и философии и строя мышления, близкого к мифологическому,- пишет современный болгарский философ Е. Данков.- Но за этой формой нельзя не видеть рационального содержания значение которого все яснее проступает на современном уровне развития научного познания".
Наиболее страстно и убежденно роль числа в познании мира определил знаменитый пифагореец V века до н. э. Филолай. В одном из сохранившихся фрагментов сочинения Филолая "О природе" говорится: "В число же никогда не проникает ложь, потому что она противна и ненавистна его природе, истина же родственна числу и неразрывно связана с ним с самого начала".
Заканчивая разговор о философских аспектах пифагорейского учения о числе, хочется вспомнить и слова великого Гёте. Будучи не только гениальным поэтом, но и выдающимся мыслителем и разносторонним ученым; Гёте стряхнул с пифагорейской мудрости идеалистическую пыль: "Числа не управляют миром, но показывают, как управляется мир".
Перейдем теперь к математической стороне пифагорейского учения о числе. Числа пифагорейцы изображали в виде точек (возможно, камешками, расположенными на песке), которые они группировали в геометрические фигуры. Так возникли числа, сегодня именуемые фигурными:
линейные числа (в современной терминологии это простые числа), т. е. числа, которые делятся на единицу и на самих себя и, следовательно, представимы только в виде последовательности точек, выстроенных в линию (линейное число 5);
плоские числа — числа, представимые в виде произведения двух сомножителей (плоское число 6);
телесные числа, выражаемые произведением трех сомножителей (телесное число 8);
треугольные числа (треугольные числа 1, 3, 6, 10);
квадратные числа (квадратные числа 1, 4, 9);
пятиугольные числа (пятиугольные числа 1, 5, 12)
и т. д. Именно от фигурных чисел пошло выражение "возвести число в квадрат или куб".
Такое фигурное представление чисел часто помогало найти различные числовые закономерности. Например, написав последовательность квадратных чисел, легко увидеть (именно увидеть глазами!)
доказательство следующего математического утверждения:
Аналогичное рассмотрение n-го треугольного числа приводит к равенству
Фигура (обозначенная черными точками), которая, будучи приложенной к основной фигуре (белые точки), образует ей подобную, была названа Аристотелем гномоном. Первоначально слово "гномон" означало солнечные часы — прибор, позволяющий по линиям, которые пересекает тень от вертикального столбика, разделять беспредельность времени на очевидные части. Число для пифагорейцев и есть такой гносеологический гномон, дающий возможность различать вещи и тем самым овладевать ими в сознании. Живые организмы растут именно методом гномона, что позволяет сохранять присущую этим организмам форму.
Вообще, с изучения фигурных чисел, т. е. сумм некоторого числа единиц-точек (камешков), поставленных в виде определенной фигуры, началось изучение сумм числовых рядов. Это в свою очередь позволило Архимеду (ок. 287-212 гг. до н. э.) развить методы нахождения площадей и объемов фигур и тел и вплотную подойти к созданию интегрального исчисления, появившегося, однако, лишь 2000 лет спустя.
Рассмотрение чисел привело пифагорейцев к рассмотрению отношений между ними, т. е. пропорций. Пропорция с равными средними членами определяет среднее значение. По преданию, Пифагору были известны три вида средних значений, которые называли "древними":
10
Некоторые отголоски пифагорейской числовой мистики мы встречаем и в наши дни: например, обычай дарить нечетное число цветов (четное число у пифагорейцев считалось несчастливым).