арифметическое среднее
геометрическое среднее
гармоническое среднее
Обратим внимание на то, что среднее гармоническое величин а, b, с есть среднее арифметическое обратных величин 1/а, 1/b, 1/с. Пропорции и средние значения пифагорейцы наполняли не только математическим, но и философским и эстетическим содержанием, объясняя с их помощью и музыкальные созвучия, и даже всю вселенную.
Однако история науки, как и сама жизнь, полна неожиданных и драматических событий: среднее геометрическое таило в себе сокрушительный удар по всей пифагорейской системе; более того, нанести этот удар пифагорейцы, истинные рыцари науки, вынуждены были сами себе. Именно пифагорейцы обнаружили, что среднее геометрическое к числам 1 и 2 (в современных обозначениях ) не выражается в виде отношения натуральных чисел, а других чисел древние греки не знали. Говоря языком геометрии, пифагорейцы установили, что диагональ квадрата, сторона которого равна 1, несоизмерима с этой стороной, т. е. отношение диагонали к стороне не выражается никаким целым или дробным числом. Выражаясь языком алгебры, пифагорейцы доказали, что уравнение m2=2n2 не имеет решений во множестве рациональных чисел[11], что и потребовало введения чисел новой природы — иррациональных.
Иррациональность отношения стороны и диагонали квадрата пифагорейцы объясняли тем, что оба этих отрезка состоят из бесчисленного множества точек и поэтому отношение сводится к отношению двух бесконечно больших целых чисел. Хотя эта мысль не выдерживает критики для геометрических объектов, находящихся в рациональных отношениях (ведь они также состоят из бесчисленного множества точек!), по отношению к иррациональным числам она является справедливой. Действительно, всякое иррациональное число можно с любой степенью точности представить в виде отношения двух целых чисел, причем чем больше будут эти числа, тем точнее их отношение будет выражать иррациональное число.
Открытие несоизмеримости (для диагонали квадрата со стороной 1 не было соответствующего числа!) опрокидывало всю философскую систему пифагорейцев, которые были убеждены, что "элементы чисел являются элементами всех вещей и весь мир в целом является гармонией и числом". Это открытие долго держалось в тайне, а ученик Пифагора Гиппас из Метапонта за то, что он открыл недостойным участия в учениях природу пропорции и несоизмеримости, был изгнан из школы Пифагора. Позднее, когда Гиппас погиб во время кораблекрушения, его противники видели в этом наказание богов за разглашение тайны. Следует сказать, что пифагорейцы, не в пример иным ученым, после отчаянной борьбы против открытия, опрокидывавшего символ их "веры" признали свое поражение. Пытаясь выйти из тупика, они стали представлять величины не арифметически — числами, геометрически — отрезками. Так возникла геометрическая алгебра.
Между тем исторически именно это неосознанное открытие иррациональных чисел является наивысшим достижением пифагорейской школы; ему было суждено пережить тысячелетия и стать поворотным этапом в развитии математики, истоком современного математического анализа. С этого открытия начинается эра теоретической математики, ибо обнаружить несоизмеримые величины с помощью опыта невозможно.
Наконец, рассмотрим "музыкальную" сторону пифагорейского учения о числе. Как уже отмечалось, открытие математических закономерностей в музыкальных созвучиях послужило первым "экспериментальным" подтверждением пифагорейской философии числа. "Открытие Пифагора... было первым примером установления числовых связей в природе,- читаем мы в "Фейнмановских лекциях по физике".- Поистине должно быть было удивительно вдруг неожиданно обнаружить, что в природе есть факты, которые описываются простыми числовыми отношениями".
С этого времени музыка, точнее теория Музыки или учение о гармонии, занимает Почетное место в пифагорейской системе Знаний. "Музыкантов"-пифагорейцев интересует не столько музыкальное искусство, реальная музыка звуков, сколько е математические пропорции и соотношения, которые, как считалось, лежат в основе музыки. Многие греческие математики, в том числе Евклид (III в. до н. э.) и Клавдий Птолемей (85? -165?), посвятили музыкальным созвучиям и построению музыкальной шкалы специальные сочинения. Впрочем, поиски математических закономерностей в музыкальных созвучиях вели и через два тысячелетия такие великие математики, как Иоганн Кеплер, Готфрид Лейбниц, Леонард Эйлер.
11
Вот это доказательство. Допустим противное, т. е пусть = m/n или m2 = 2n2, причем натуральные числа m и n не имеют oбщих делителей, кроме единицы, так как если бы они существовали, то на них дробь можно было бы сократить. Если m — нечетное число, мы получаем противоречие, так как 2n2 четно, а квадрат нечетного числа — число нечетное. Еcли m четно и равно 2k, то 4k2 = 2n2, или 2k2 = n2 так что n должно быть четным и, следовательно, числа m и n имеют общий делитель 2, что противоречит начальному предположению. Итак,
не является отношением двУх натуральных чисел