Выбрать главу

В игре «Жизнь» каждый конечный автомат имеет восемь соседей, расположенных выше, ниже, справа, слева и по диагоналям от нее. Будем считать, что каждый конечный автомат имеет всего два возможных состояния — 0, или «мертв», и 1, или «жив», — которые мы будем обозначать разными цветами. Суть игры в том, чтобы последовательно определять состояния конечных автоматов по установленным правилам перехода.

Правило № 1: Будущее состояние конечного автомата равно предыдущему, если число соседей конечного автомата в состоянии 1 равно 2.

Правило № 2: Конечный автомат переходит из состояния 0 в состояние 1, если число его соседей в состоянии 1 равно 3.

Правило № 3: Третье правило моделирует соседство с большим или малым числом «живых» автоматов, то есть автоматов в состоянии 1. Если число соседних автоматов в состоянии 1 меньше 2, то есть 1 или 0, либо больше 3, то есть 4, 3, 6, 7 или 8, то конечный автомат «умирает», то есть переходит из состояния 1 в состояние 0.

Последовательно применяя правила перехода для всех конечных автоматов клеточного автомата, мы увидим, как в процессе эволюции постепенно появляются характерные шаблоны и фигуры.

Модель «хищник — жертва» и клеточные автоматы

Модель «хищник — жертва» Лотки — Вольтерры стала одной из первых математических моделей в биологии и, возможно, одной из самых важных в математической биологии. Как мы уже отмечали, одно из преимуществ клеточных автоматов заключается в том, что для их использования не требуется знать дифференциальное уравнение, описывающее явление или систему. Модель «хищник — жертва» Лотки — Вольтерры была представлена в 1984 году Александром Дьюдени в статье «Акулы и рыбы ведут экологическую войну на тороидальной планете Ва-Top» (Shark and Fish Wage an Ecological War on the Toroidal Planet Wa-Tor). He используя ни одно из уравнений, представленных Лоткой и Вольтеррой, Дьюдени получил похожие результаты на компьютере со стандартными для 1980-х годов характеристиками.

Целью Дьюдени было найти подходящие значения параметров модели, допускавшие сосуществование на небольшой решетке популяции хищников (акул) и жертв (рыб).

Дьюдени рассмотрел следующие параметры:

— число жертв (рыб);

— временной порог размножения рыб: если рыба выживает в течение определенного числа циклов (или заранее установленного времени моделирования) и ячейка остается свободной, в ней рождается рыба;

— число хищников (акул);

— максимальное время голодания хищников: если акула не может поймать рыбу в течение определенного числа циклов (или заранее установленного времени моделирования), она умирает;

— временной порог размножения акул: этот параметр определяется аналогично соответствующему параметру для рыб, однако значения этих параметров необязательно совпадают.

Фрагмент статьи Александра Дьюдени, посвященной модели «хищник — жертва» и опубликованной в декабрьском номере американского журнала Scientific American за 1984 год.

Клеточный автомат модели имеет тороидальную форму, выбранную для того, чтобы устранить границы решетки и обеспечить схожесть с настоящим морем. Ячейки имеют всего три состояния: 1) в ячейке находится рыба, 2) в ячейке находится акула, 3) ячейка свободна. Рыбы (цветные ячейки) «плавают» случайным образом в направлении одной из четырех соседних ячеек (на север, юг, запад или восток), если одна из них или более свободны (не имеют цвета). Акула «съедает» рыбу, если они находятся в смежных ячейках. Если в соседних ячейках нет рыбы, акула плывет в свободную ячейку.

Динамика эксперимента аналогична той, что описывается уравнениями модели «хищник — жертва» Лотки — Вольтерры. Если акул немного, численность рыб быстро увеличивается. С увеличением числа рыб численность акул также возрастет, что ведет к постепенному снижению числа рыб. В зависимости от численности акул и их расположения на тороидальной решетке рыбы могут полностью исчезнуть. В этом случае популяция акул в отсутствие пищи, то есть рыб, также быстро вымрет. Какими должны быть условия сосуществования акул и рыб, необходимые для сохранения обеих популяций? Приглашаем читателя поиграть с моделью Ва-Тор и самостоятельно определить наиболее подходящие параметры.

Глава 2

Жизнь — изменчивое явление

Кажется, что живые существа постоянно решают самые разные задачи, в том числе и для того, чтобы поддерживать такое удивительное и сложное явление, как жизнь. Постоянная беготня муравьев, переносящих пропитание и различные материалы, движение красных кровяных телец, образование стай птиц, беспрерывная передача сигналов между нейронами мозга, преобразование одних веществ в другие в ходе клеточного метаболизма, сердцебиение, этапы развития эмбриона с момента зачатия до момента рождения, изменения, происходящие с головастиком, — лишь некоторые примеры, демонстрирующие динамическое поведение живых существ. Как следствие, живые организмы представляют собой подвижные системы, состояние и поведение которых со временем меняются. Если бы мы могли увидеть все, что происходит внутри простой клетки на протяжении одной секунды, мы бы поразились количеству преобразований за это время. Системы, обладающие подобными свойствами, называются динамическими.