Поэтому
ln(y) = r·t + C.
Если мы избавимся от логарифма и сгруппируем члены выражения, то найдем решение дифференциального уравнения у' = r·у. Для этого подставим в выражение величину, обозначающую исходное число бактерий (ранее мы обозначили его через у0). Определим функцию у:
y = y0ert
В 1838 году математик Пьер Франсуа Ферхюльст видоизменил модель Мальтуса с учетом того, что размеры окружающей среды ограничены, поэтому должно существовать некоторое максимальное значение численности населения k, известное как поддерживающая емкость среды. Ферхюльст получил следующее дифференциальное уравнение: у' = r·y(k — у).
Бельгийский математик Пьер Франсуа Ферхюльст (1804–1849), один из величайших специалистов по теории чисел первой половины XIX века.
Решением уравнения Ферхюльста является знаменитое логистическое уравнение, которое описывает не только рост населения, но и распространение эпидемий и рост социальных сетей в интернете:
Логистическое уравнение применимо для анализа S-образного роста — экспоненциального, но ограниченного количеством ресурсов, будь то физическое пространство, продовольствие, емкость рынка мобильной связи или число пользователей социальной сети. Экспоненциальный рост является неограниченным, то есть утопичным, возможным только в мире с неисчерпаемыми ресурсами. В логистической же модели рассматривается реальный мир, к примеру планета Земля, ресурсы которой, что очевидно, ограничены.
Любопытно отметить, что эти модели были предложены в XIX веке, в разгар промышленной революции. В эту эпоху жили такие ученые, как Чарльз Дарвин, создатель теории эволюции путем естественного отбора, и Чарльз Бэббидж, изобретатель аналитической и разностной машин — прообразов современных компьютеров. Эти любопытные совпадения предвосхитили плодотворный союз математики и компьютерных технологий, который сыграл в XX веке определяющую роль в изучении жизни.
Биотехнология — это раздел биологии, с помощью которого методы генной инженерии и выращивания клеточных культур находят широкое применение в сельском хозяйстве, фармакологии, медицине и диетологии. Основной инструмент биотехнологов — хемостат, резервуар или биореактор, в котором посредством культивирования клеток вырабатываются полезные вещества.
Биореактор в лаборатории. Внутри биореактора находятся клетки.
Цель подобных исследований — достичь состояния, при котором число микроорганизмов N и объем питательных веществ С были бы практически постоянными, а рост численности микроорганизмов — экспоненциальным. Именно при таком росте вырабатываются полезные вещества, например антибиотики. В ходе эксперимента необходимо постоянно пополнять запас питательных веществ и одновременно убирать жидкости, токсины и любые другие продукты метаболизма микробов, при этом объем среды культивации должен оставаться неизменным. В промышленности хемостаты используются для выработки этанола, ферментированных продуктов питания (например, сыров), белков, обладающих лечебными свойствами (в частности, инсулина), и т. д. Хемостаты также применяются при изучении экологии микроорганизмов, а также для анализа их эволюции.
Как вы уже, наверное, догадались, инженеры-биохимики и другие специалисты в сфере биотехнологий в своих экспериментах с биореакторами успешно и широко применяют дифференциальные уравнения, которым посвящен отдельный раздел математической биологии. К примеру, дифференциальные уравнения, описывающие процессы, происходящие в хемостате, выглядят так:
где N — число микроорганизмов, С — концентрация питательных веществ, F — поток (при этом Fвход = Fвыход), V — объем. В дифференциальных уравнениях К(С), α и C0 — параметры модели. Обратите внимание, что первое дифференциальное уравнение, описывающее изменение N, напоминает логистическое уравнение (о нем мы поговорим позже). Оно также содержит поток F. На основе этих и других выражений были разработаны программы, управляющие хемостатами, которые используются, в частности, для компьютерного контроля ферментации.