Выбрать главу

Кривая Гомпертца, описывающая рост раковой опухоли (N — размер опухоли, t — время).

Эта функция весьма схожа с сигмоидой (логистической функцией): рост опухоли замедлен в начале и конце процесса. Замедление в конце процесса кажется очевидным, если учесть, что по мере роста опухоли клетки, расположенные внутри нее, получают меньше кислорода, отмирают и вызывают некроз ядра опухоли. В результате ее размер стабилизируется: рост внешней части уравновешивается отмиранием клеток во внутренней части.

Этому же закону подчиняется и динамика роста некоторых предприятий, в частности тех, где большую роль играют технологии, — фармацевтических компаний или операторов мобильной связи. Вначале затраты на исследования, патенты и т. д. превышают доходы от продаж, затем компания переживает период бурного роста и получает прибыль. На следующем этапе продажи падают, так как рынок постепенно насыщается. Также функцией Гомпертца описывается рост органов эмбриона или, что еще любопытнее, регенерация хвоста у ящерицы.

Хотя приведенное выше выражение может показаться сложным, следует понимать, что благодаря компьютерам вычислить его значение сравнительно легко. По сути, речь идет о достаточно простом выражении вида , в котором показатель степени возводится в новую степень.

В 1980-е годы исследователь Уэлдон заметил, что этой функцией не очень точно описывается рост опухолей малых размеров, поскольку в ней не учтены некоторые биологические аспекты, в частности роль иммунной системы. В поправке Уэлдона утверждается, что на первом этапе роста опухоли раковые клетки не сражаются за доступные ресурсы, и их рост описывается экспоненциальным законом, или моделью Мальтуса. Однако по достижении некоторого критического размера рост опухоли будет описываться уже не моделью Мальтуса, а функцией Гомпертца.

* * *

МАТЕМАТИКА И НОВЫЕ ПУТИ ИССЛЕДОВАНИЯ

В 2005 году исследователь Антонио Бру из мадридского университета Комплутенсе предположил, что на поздних стадиях раковые заболевания можно излечивать, вызывая сильное и продолжительное воспаление тканей вокруг опухоли. Эта гипотеза стала результатом математических исследований роста раковых клеток. В ходе исследований было отмечено, что рост всех клеток подчиняется одной схеме, которую Бру назвал схемой универсальной динамики роста опухолей. В этой модели клетки на границе опухоли играют определяющую роль в методе лечения, предложенном Бру. Первоначальное скептическое отношение к гипотезе отчасти было вызвано тем, что использованная математическая модель отличалась от классических моделей раковых заболеваний. Во-первых, в ней предполагалось, что рост клеток подчиняется не экспоненциальному, а линейному закону, а во-вторых, считалось, что рост опухоли зависит не от количества питательных веществ, а от свободного пространства. Это прекрасный пример того, как математика подсказывает исследователям новые пути лечения рака.

Математическая модель и результат компьютерного моделирования роста раковой опухоли.

* * *

СПИД, свиной грипп и другие заболевания, которые можно изучить с помощью математики

В 1983 году французский исследователь Люк Монтанье описал вирус СПИДа, или ВИЧ (вирус иммунодефицита человека). Он представляет собой сферу диаметром 100 нанометров и имеет внешнюю белковую оболочку. Вирусологи называют этот вирус ретровирусом, так как его геном образован цепочкой РНК. По данным Всемирной организации здравоохранения, в 2006 году в мире насчитывалось примерно 39,3 миллиона человек, зараженных вирусом СПИДа, примерно 24 миллиона из них проживали на Африканском континенте.

В 2009 году средства массовой информации сообщили о начале пандемии свиного гриппа. По данным Всемирной организации здравоохранения, возбудителем заболевания является вирус H1N1/09. Его геном представляет собой смесь ДНК птиц, свиней и человека, поэтому вирус способен преодолевать межвидовые барьеры. Свиной грипп был самой популярной темой в СМИ летом и осенью 2009 года. Изначально процент смертельных случаев среди заболевших был высоким, однако со временем он снизился, что совпало с началом широкого использования противовирусных препаратов.

Подобные заболевания, носящие характер пандемии, становятся источником напряженности в обществе. Как санитарные службы всего мира прогнозируют и отслеживают распространение заболеваний? Как определяется момент начала эпидемии в определенной стране? Когда следует начинать вакцинацию людей, входящих в группу риска? Ответы на эти вопросы дает ряд математических моделей, составляющих формальное ядро эпидемиологии, которая изучает факторы, влияющие на здоровье и заболеваемость населения. Эпидемиология привлекла внимание математиков еще в начале XX века, а сегодня она стала одной из областей изучения математической биологии.