Первыми, кто рассмотрел эпидемии с точки зрения математики, были Уильям Хаммер и Рональд Росс. Для анализа эти ученые применили закон действующих масс. Позднее Лоуэлл Рид и Уэйд Фрост разработали модель Рида — Фроста, связав число здоровых людей, восприимчивых к заболеванию (S), число заболевших (I) и число людей, невосприимчивых к заболеванию.
Анализировать распространение заболеваний специалистам вновь помогают дифференциальные уравнения. Допустим, что численность населения составляет N человек, из которых I заражены вирусом. Это означает, что число здоровых людей равно N — I. Так как люди, зараженные вирусом, живут рядом со здоровыми, последние подвергаются риску заражения (S). Следовательно, S = N — I.
В одной из классических моделей эпидемиологии утверждается, что изменение числа зараженных в зависимости от времени описывается дифференциальным уравнением: I' = k·I·(N — I). В упрощенном виде оно выглядит так: I' = k·I·S. Решением этого дифференциального уравнения будет знаменитое логистическое уравнение, описывающее ход любой эпидемии:
Обратите внимание, что в начале эпидемии (то есть при t, стремящемся к нулю) логистическое уравнение будет приблизительно эквивалентным уравнению экспоненциального роста, то есть уравнению модели Мальтуса. Это отражает тот факт, что в начале эпидемии число зараженных резко увеличивается. В случае с заболеваниями, которые становятся причиной напряжения в обществе, например СПИДом или свиным гриппом, сообщения о росте эпидемии, распространяемые СМИ, только усугубляют панику.
Если предположить, что предельное число заболевших равно числу здоровых людей, восприимчивых к заболеванию, то есть N, то начиная с определенного момента рост эпидемии замедлится, как и рост числа новых заболевших, I. Это значение, столь важное для органов здравоохранения любой страны, достигается, когда число заболевших I составляет половину численности восприимчивого к вирусу населения, то есть N/2. После этого количество новых случаев заболевания стабилизируется вплоть до окончания эпидемии.
В настоящее время благодаря использованию компьютерного моделирования можно оценить распространение эпидемии (например, сезонного гриппа), что позволяет органам здравоохранения формировать календарь вакцинации населения.
В эпидемиологии используются такие компьютерные программы, как Epigrass, Any Logic Model-Builder и STEM (Spatio Temporal Epidemiological Modeler).
Число e и колония бактерий Escherichia coli
Нет такой области науки, где рано или поздно не появилось бы число е, будь то молекулярная биология или статистика, физика или химия. Это вездесущее число обнаруживается во множестве природных явлений. Число е — иррациональное. Это означает, что его десятичная запись никогда не заканчивается и не повторяется, что роднит его с числом π. Считается, что число е открыл Якоб Бернулли при изучении следующего предела:
получив результат 2,71828. Программа символьных вычислений, подобная Derive, позволяет мгновенно вычислить этот предел и получить указанный выше результат:
LIM((1 + 1/n)^n, n, INF, 0)
Приближенное значение числа e
В 1618 году Непер уже упоминает это число в своих логарифмических таблицах как основание натуральных логарифмов logc(x) или, в сокращенном виде, ln(х). Обозначение в виде буквы е ввел математик Леонард Эйлер в 1727 году. Среди любопытных фактов, связанных с этим числом, выделяются те, что относятся к экспоненциальной функции ех. Во-первых, производной функции f(х) = ех является эта же самая функция, то есть f'(х) = ех . Производная в точке х = 0 равна f'(х) = 1. Во-вторых, интерес представляет интеграл этой функции: