* * *
СЕТЬ ХОПФИЛДА
Механизм обучения, запоминания букв, цифр и сигналов светофора можно смоделировать с помощью нейронной сети. Модель памяти, определяемая с помощью тензорного произведения, известна как сеть Хопфилда. Она названа в честь исследователя Джона Джозефа Хопфилда, который представил эту модель в 1980-е годы. Сегодня модель Хопфилда используется в самых разных цифровых системах: не только для решения множества физических задач, но и в электронике, и при обработке изображений.
Модель памяти Хопфилда из восьми нейронов. Каждый нейрон в этой модели связан со всеми остальными.
* * *
Обратные матрицы применяются также для решения систем уравнений. Рассмотрим систему из трех уравнений с тремя неизвестными:
а11х + а12y + а13z = b1
а21х + а22y + а23z = b2
а31х + а32y + а33z = b3
Матрицы также используются для представления систем уравнений:
Это равенство равносильно следующему:
А·X = В.
Если мы найдем матрицу, обратную А, то есть А-1, а затем умножим обе части равенства на эту обратную матрицу:
А-1·А·Х = А-1· В,
то, поскольку произведение А·А-1 равно единичной матрице Е, имеем:
Е·Х = А-1·В.
Кроме того, так как произведение любой матрицы на единичную матрицу Е равно исходной матрице, получим:
Х = А-1·В.
Таким образом, решить систему уравнений, то есть определить значения х, у, z, можно с помощью обратной матрицы коэффициентов: нужно умножить ее на вектор-столбец свободных членов системы уравнений.
Продемонстрируем этот метод на примере под названием «эксперимент энтомолога». Допустим, что мы отправились в поле в поисках определенного вида насекомых и разместили ловушки там, где эти насекомые водятся. Спустя несколько дней мы вернулись к ловушкам, чтобы собрать насекомых. В лаборатории мы установили, что в ловушках оказалось 180 насекомых. Мы разделили их на молодых (обозначим их через х) и взрослых (у) особей. Имеем первое уравнение системы:
х + у = 180.
На основе результатов аналогичных экспериментов, проведенных ранее, мы знаем, что для насекомых этого вида соотношение молодых и взрослых особей равно 2 к 1. Кроме того, в силу естественных причин 6 взрослых насекомых умерло:
2х = у — 6.
Чтобы определить численность молодых и взрослых особей, нужно решить следующую систему уравнений:
х + у = 180,
2х = у — 6.
Второе уравнение можно записать в виде: 2х — у = —6. Система примет вид:
х + у = 180,
2х — у = -6.
В матричной нотации эта система уравнений записывается так:
Имеет ли система уравнений решение?
Проницательные математики имеют одну достойную привычку — они не тратят время на бесполезные действия. Одним из наиболее ярких примеров этому является решение систем уравнений. Рассмотрим все возможные группы систем уравнений.
Во-первых, система может не иметь решений — в этом случае она называется несовместной. Представим, что система состоит из двух уравнений, описывающих две параллельные прямые. Поскольку прямые не пересекаются, система не будет иметь решений. Во-вторых, система может иметь бесконечно много решений, то есть быть неопределенной. Продолжив аналогию с прямыми, такая система состоит из двух уравнений, описывающих две совпадающие прямые, имеющие бесконечно много общих точек. Наконец, если система из двух уравнений описывает прямые, пересекающиеся в одной точке, она называется совместной и определенной. Ее решением будет единственная точка пересечения прямых (х, у).
Рассмотрим систему из трех уравнений, которая в матричном виде выглядит так: