Выбрать главу

dy/dt = ry — sxy.

Одна из предпосылок моделей Вольтерры и Лотки заключалась в том, что отдельные особи, к примеру волки и зайцы, ведут себя подобно частицам газа. Проведя параллель с так называемым законом действующих масс, мы обнаружим, что число взаимодействий между хищниками и жертвами зависит от столь очевидных параметров, как число хищников х и число жертв у. По этой причине их взаимодействие обозначается произведением этих чисел, то есть х·у с соответствующими коэффициентами: qxy и — sxy.

Объединив два описанных выше дифференциальных уравнения в систему:

получим знаменитую систему уравнений Лотки — Вольтерры.

После того как мы учли взаимодействие хищников и жертв, решить эту систему уже не так просто, как раньше. В соответствии с моделью, при высокой численности жертв возрастет и число хищников, однако по мере поедания жертв популяция хищников также сократится. В свою очередь, ввиду снижения численности хищников число жертв вновь возрастет, и это вновь приведет к увеличению числа хищников.

Если представить подобные циклические колебания численности популяций на одном графике, мы получим цикл, имеющий название «цикл — решение», так как он является решением уравнений Лотки — Вольтерры.

Модель «хищник — жертва» Лотки — Вольтерры: число хищников обозначено на оси у, число жертв — на оси х.

Получить «цикл — решение» системы уравнений можно разными способами, но самым важным из них является рассмотрение колебаний численности популяций. Форма цикла зависит от начального числа хищников и жертв.

Столь же нетрудно найти точку равновесия, так как ее координаты равны:

Нужно очень четко представлять себе описанные колебания системы, особенно когда речь идет о климатических моделях (о них мы поговорим в следующем разделе).

* * *

КОНКУРЕНЦИЯ МЕЖДУ ВИДАМИ

Помимо модели «хищник — жертва», Лотка и Вольтерра представили еще одну модель, описывающую конкуренцию между двумя популяциями или видами. Допустим, что две популяции конкурируют за один и тот же ресурс, при этом рост их численности описывается логистической моделью.

Обозначив через х и у численность особей в популяциях, имеем:

где rx, rу — коэффициенты роста, kx, ky — поддерживающие емкости для каждой популяции. Эти выражения также содержат коэффициенты α, описывающие взаимодействие между особями в популяциях. Иными словами, αxy обозначает воздействие, которое оказывает вид у на вид х, в то время как αyx - это воздействие х на у. Модель можно расширить для нескольких видов, однако это несколько усложнит анализ возможных ситуаций.

Модель межвидовой конкуренции Лотки — Вольтерры для четырех видов.

* * *

Математические модели климата. Глобальное потепление: миф или реальность?

В последние десятилетия весьма актуальна тема глобального потепления. Хотя метеорологические центры составляют прогнозы погоды с применением сложных математических моделей, на их основании довольно трудно дать ответ на вопрос, действительно ли наблюдается глобальное изменение климата.

Математические модели, используемые в метеорологии, называются климатическими моделями. Они основаны на описаниях атмосферных процессов и компьютерном моделировании взаимодействия атмосферы и океанов, суши и шапок льда на полюсах. Эти модели представляют собой дифференциальные уравнения, в основе которых лежат законы физики. При их составлении поверхность Земли делится на квадраты, которые описываются уравнениями. Затем вычисляется скорость ветров, относительная влажность воздуха, теплопередача и так далее, а также взаимодействие между соседними областями. На основе интерпретации итоговых результатов моделирования метеорологи и составляют свои прогнозы.

Математические модели атмосферы позволяют предсказывать погоду.

К наиболее надежным метеорологическим данным относятся так называемые климатические режимы, которые учитывают преобладающее направление ветра и другие параметры, описывающие ожидаемую погоду — солнечную, облачную или дождливую. Климатические режимы определяются с помощью статистических методов на основе данных о погоде прошлых лет в стране или регионе. Однако поскольку атмосфера представляет собой хаотическую систему, стоит задуматься, насколько достоверны прогнозы погоды?