Выбрать главу

Такой подход соответствует подходу описания структур в неорганической и органической химии и по-видимому является справедливым для образования геометрии в ячейке металла. Однако, после этого, валентные электроны делокализуются по всей решетке металла, при этом за счет близкого расстояния между атомами, электронные орбитали существенно перекрываются. В методе молекулярных орбиталей, применяемом для отдельных молекул, считается, что атомы теорияют индивидуальность и электроны образуют общую для молекул орбиталь. В металле электроны образуют общий для всей решетки металла электронный газ.

В случае перекрывания орбиталей N атомов в твердом теле, образуются N новых орбиталей, относящихся к твердому телу. Уровни энергий орбиталей в металле расположены близко и образуют энергетические полосы [10,с.138]:

На этой схеме на каждом уровне находятся 2 электрона и при общем количестве N электронов, нижние уровни N/2 будут дважды занятыми.

Электрический ток является упорядоченным движением электронов. Приведем описание на основании метода молекулярных орбиталей [10,с.138]. Движение электронов может происходить, если электроны получают энергию и переходят на высокие незанятые уровни. То есть структуры металлов содержат незанятые верхние энергетические уровниъ. Для полупроводников незанятая зона близко расположена с занятой и переход возможет только при повышении энергии с повышением температуры.

Взаимодействующие в решетке атомы железа являются квантовой системой, для которой выполняется запрет Паули, т.е. на каждом энергетическом уровне в кристалле не может быть более двух электронов на одном энергетическом уровне. При одинаковой энергии нескольких g энергетических уровней (квантовых состояний), т.е. при вырождении, на каждом уровне может находится только 2g электронов (g – степень вырождения). 2N электронов индивидуальных атомов железа с высшего уровня разместятся попарно на N уровне полосы в криталлической решетке.

Энергия электронов в металле квантуется, т.е. занимает определенные уровни энергии (или дискретные значения). Каждый уровень индивидуального атома железа расщепляется в кристаллической решетке из N атомов – на N близкорасположенных уровней, составляющих или зону [11,с.247]. Валентные электроны на внешних электронов больше возмущаются, чем электроны на внутренних орбиталях атома. Схема расщепления уровней для внешних валентных электронов и внутренних в зависимости от расстояния между атомами железа показана на рисунке:

Как видно из рисунка перекрывание внутренних орбиталей практически отсутствует. Расщеплению подвергаются орбитали, занятые валентными электронами и свободные орбитали высшего уровня.

Величины энергетических уровней валентных электронов в кристаллической решетке металла объединяются в зоны, которые разделяются запрещенными зонами (промежутками) без разрешенных значений энергии, т.е. в которых электроны находиться не могут [11,с.248]. Ширина разрешенной зоны составляет несколько электронвольт [11,с.249]. Уровни в зоне располагаются максимально близко с ростом числа атомов железа в решетке.

Валентной зоной является нижняя разрешенная зона в кристаллической решетке, которая равна энергетическому уровню валентных электронов в основном состоянии индивидуального атома. Остаются свободными разрешенные зоны с более высокой энергией.

Савельев приводит три возможных случая заполнения, определяемые степенью заполнения электронами валентной зоны и ширины запрещенной зоны по данным [11,с.249]:

В металлах валентная зона и зона проводимости перекрываются.

Энергия электрического поля может переводить электроны на более высокие энергетические положения и поэтому электроны могут ускоряться в направлении, противоположном направлению поля. Неполное заполнение валентной зоны происходит при перекрывании зон или при нахождении только одного электрона на последнем верхнем уровне. В случае перекрывания зон, число уровней в зоне проводимости будет больше N и электроны не займут все уровни зоны в т.ч. при их количестве 2N. В случае только одного электрона на верхнем уровне, N электронов попарно займут половину уровней валентной зоны.