Выбрать главу

Широко предлагаются, исследуются и применяются модели, приводящие к следующему частному случаю задачи (1):

Это – модели с дисконтированием (как известно, α – дисконт—фактор). Естественно попытаться выяснить, какими «внутренними» свойствами выделяются задачи типа (2) из всех задач типа (1). В частности, почему такой большой популярностью пользуется характеристика инвестиционного проекта NPV (Net Present Value – чистая текущая стоимость), относящаяся к характеристикам дисконтированного типа и подробно рассматриваемая ниже (глава 2.3).

Представляет интерес изучение и сравнение между собой планов возможного экономического поведения на k шагов

и

(Естественно, предполагаем, что все пары соседних элементов входят в множество К ). Естественно сравнение проводить с помощью описывающих результаты экономической деятельности функций, участвующих в задачах (1) и (2). Именно, будем говорить, что план Х 1 лучше плана Х 2 при реализации с момента i , если

Будем писать Х 1 R(i)Х 2 , если выполнено неравенство (3), где R(i)  – бинарное отношение на множестве планов, задающее упорядочение планов отношением «лучше».

Ясно, что упорядоченность планов на k шагов, определяемая с помощью бинарного отношения R(i), может зависеть от i , т. е. «хорошесть» плана зависит от того, с какого момента i он начинает осуществляться. С точки зрения реальной экономики это вполне понятно. Например, планы действий, вполне рациональные для периода стабильного развития, никуда не годятся в период гиперинфляции. И наоборот, приемлемые в период гиперинфляции операции не принесут эффекта в стабильной обстановке.

Однако, как легко видеть, в моделях с дисконтированием (2) все упорядочения R(i) совпадают , i = 1,2, …, m—k. Оказывается – это и есть основной теоретический результат настоящего подпункта – верно и обратное: если упорядочения совпадают, то мы имеем дело с задачей (2) – с задачей с дисконтированием, причем достаточно совпадения только при k =1,2. Сформулируем более подробно предположения об устойчивости упорядочения планов.

(I). Пусть

Верно одно из двух: либо

для всех

либо

для всех

(II). Пусть

Верно одно из двух: либо

для всех

либо

для всех

Как впервые подробно показано в работе [4], при некоторых внутриматематических условиях регулярности из условий устойчивости упорядоченности планов (I) и (II) следует существование констант

и

таких, что

Поскольку прибавление константы не меняет точки, в которой функция достигает максимума, то последнее соотношение означает, что условия устойчивости упорядоченности планов (I) и (II) характеризуют (другими словами, однозначно выделяют) модели с дисконтированием среди всех моделей динамического программирования.

Математические условия, при которых доказывалась теорема о характеризации моделей с дисконтированием, постепенно ослаблялись на протяжении 1970–х годов, однако на экономическую сторону дела эти внутриматематические усовершенствования не влияли.

Асимптотически оптимальные планы. Рассмотрим модель (2) с

т. е. модель без дисконтирования

При естественных математических предположениях, на которых не будем останавливаться, при каждом m существует оптимальный план

при котором достигает максимума оптимизируемая функция. Поскольку выбор горизонта планирования нельзя рационально обосновать, хотелось бы построить план действий, близкий к оптимальному при различных горизонтах планирования. Это значит, что целью является построение бесконечной последовательности

такой, что ее начальный отрезок длины m, т. е.

, дает примерно такое же значение оптимизируемого функционала, как и значение для оптимального плана

Бесконечную последовательность

назовем асимптотически оптимальным планом.