Выбрать главу

Полученный таким образом концентрат разлагают в автоклавах раствором соды при 180-200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту). Затем раствор высушивается (иногда предварительно производится дополнительное растворение в аммиаке), а получившиеся соли прокаливают. В итоге всех этих процедур получается триоксид вольфрама WO 3.

Для получения чистого вольфрама его триоксид WO 3 восстанавливают до металлического порошка в водородной атмосфере при температуре около 700°C. Далее настает черед методов порошковой металлургии.

Полученный порошок вольфрама прессуют высоким давлением, а затем спекают в атмосфере водорода при температуре 1200-1300°C. После этого в специальных аппаратах пропускают через спрессованный порошок электрический ток. Металл нагревается до 3000°C, при этом происходит его спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Рис. 177. Металлический вольфрам

Трудно себе представить, что всю эту процедуру каким-то образом мог проделать человек каменного или даже бронзового века. Да и что бы он потом делал с металлическим вольфрамом?..

Лампочки с вольфрамовыми нитями ему точно были ни к чему – электричества еще не было. Да и другие области современного применения этого металла никак не пересекаются с интересами древнего человека.

Из сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей. Сплав вольфрама, никеля и меди служит для изготовления контейнеров, в которых хранят радиоактивные вещества, поскольку его защитное действие на 40% выше, чем у свинца. Вольфрам – непременная составная часть лучших марок инструментальной стали. В целом ныне почти 95% всего добываемого вольфрама поглощает именно производство подобных сплавов.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, раствор вольфрамата натрия Na 2WO 4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.

Рис. 178. Электрическая лампочка в каменном веке бесполезна

Все указывает на то, что добыча шеелита нужна была богам – представителям высоко развитой цивилизации. Но тогда, на первый взгляд, получается, что боги либо обладали, находясь на Земле, необходимым для получения вольфрама оборудованием (что противоречит описанной ранее гипотезе Ситчина), либо вывозили шеелит в «сыром» виде (то есть в виде руды) куда-то за пределы нашей планеты и там уже добывали из него вольфрам (что выглядит по меньшей мере нерациональным решением)…

Так бы и остались шеелитовые рудники непонятной загадкой, если бы (уже на стадии работы над данной книгой) мой знакомый из Санкт Петербурга, Сергей Викторович Дигонский, не прислал мне свою монографию под названием «Газофазные процессы синтеза и спекания тугоплавких веществ». Из этой монографии следует, что можно извлекать тугоплавкий вольфрам из шеелита даже… в тех примитивных печах, которые использовались еще в самых древних металлургических центрах!

Дело в том, что в вышеописанных древних металлургических процессах металл получается его восстановлением из оксидов, содержащихся в руде, а в роли восстановителя выступает окись углерода СО, получаемая из древесного угля. Однако и в руде, и даже в древесном угле неизбежно имеется какое-то количество воды. И уже при температурах 700-800 оС вода в присутствии углерода начинает разлагаться в соответствии со следующей реакцией:

H 2O + C → H 2 + CO

А водород – очень сильный восстановитель (более сильный, чем окись углерода СО), и он активно включается в химические реакции с оксидами металлов, в результате чего можно получить чистый металл по реакции:

MeO + H 2 → Me + H 2O

В такой биреакционной (то есть состоящей из двух реакций) схеме с воды процесс начинается и водой же заканчивается. Образовавшаяся в итоге вода вновь вступает в реакцию с углеродом и так далее…

Суммарно же схему условно можно представить следующей реакцией:

MeO + C → Me + CO

Любопытно, что при такой биреакционной схеме не требуется даже доводить металл до расплавленного состояния – он восстанавливается, оставаясь в твердой фазе. Все необходимое делает мобильный и подвижный водород, передвигаясь в пространстве между частичками шихты.

Но эта мобильность создает и проблему – при обычной тигельной плавке водород быстро покидает зону реакции, улетучиваясь вместе с другими газообразными продуктами. И для того, чтобы восстановление металла проходило по указанной биреакционной схеме, нужно не дать водороду улетучиться.

В опытах, представленных в монографии Дигонского, данная проблема решалась за счет того, что реакция проводилась в закрытой куполообразной печи-реакторе. И опыты дали поразительные результаты.

«…были проведены эксперименты по пирометаллургическому разделению оксидов вольфрама и кальция, связанных в шеелите. Опыты по прямому восстановлению шеелитового концентрата нефтяным коксом осуществлялись при температуре 1100-1150 оС в течение 1 часа. Этого …было недостаточно для восстановления оксида вольфрама до металла, но образовавшийся в вышеуказанных условиях спекшийся продукт состоял из двух частей, причем нижняя часть представляла собой спек нерудных оксидов, а верхняя часть была полностью представлена коричнево-бурым WO 2, восстановленным по реакции:

CaWO 4 + H 2 → WO 2 + CaO + H 2O

При увеличении длительности процесса шеелит восстанавливался до металлического вольфрама [см. Рис. 179 ], образующего смесь с оксидом кальция» (С.Дигонский, «Газофазные процессы синтеза и спекания тугоплавких веществ»).

Рис. 179. Порошок металлического вольфрама, полученный из шеелитового концентрата

Температура 1100-1150 оС вполне достижима в древней металлургической печи. Более того – это ее обычный температурный режим. Вместо нефтяного кокса в качестве источника углерода вполне можно использовать древесный уголь. Вода есть и в руде, и в древесном угле, но можно при необходимости ее и добавить (хотя Дигонский уверил меня, что этого и не потребуется – воды итак будет хватать для получения достаточного количества водорода).

Нужно лишь предотвратить выход водорода из зоны реакции, а для этого можно просто плотно замазать глиной горлышко керамического горшка (который выступает в роли тигля) и… перевернуть его вверх дном. Все – водород уже никуда не денется и будет оставаться в зоне реакции…

Однако нет никаких признаков того, чтобы люди были знакомы с таким простым приемом. Во-первых, на всех древних изображениях, связанных с металлургическими процессами, тигли изображены в обычном, а не в перевернутом положении. А во-вторых, если бы этот прием был известен, он в том или ином виде скорее всего сохранился бы в металлургической традиции. Между тем биреакционная схема была предложена лишь в ХХ веке.

С другой стороны, боги, которые смогли приспособиться к отсутствию сложного оборудования, используя для получения бронзы примитивные печи, вполне могли использовать те же самые печи для получения вольфрама из шеелита по биреакционной схеме. Знаний у них вполне должно было на это хватить.

И вот, что любопытно. В Древнем Египте довольно широко была распространена традиция изготовления сосудов с круглым или закругленным дном (позднее такую форму дна имели некоторые древнегреческие амфоры). Такое дно абсолютно нелогично для обычного сосуда – сосуд опрокидывается на плоской поверхности, и нужно ставить его в специальные подставки либо в ямки в земле. Зато подобная форма совершенно логична и наиболее функциональна для тиглей, которые необходимо переворачивать вверх дном, то есть для получения металлов по биреакционной схеме.