К. Шварцшильд изучал, в частности, поведение света в сильном поле тяготения, создаваемом сферическим телом (звездой). Он получил удивительный результат, состоящий в том, что, если тело массы M имеет радиус Rg, то при Rg = 2GM/c2 сила тяготения совпадает с простой формулой, полученной из законов Ньютона. В чем здесь дело?
В принципе законы Ньютона без труда выводятся из ОТО, и поправки ОТО справедливы лишь в сверхсильных гравитационных полях. А здесь поле явно сверхсильное, так как тяготение становится бесконечным, а в то же время вроде бы справедливо выражение, полученное из законов Ньютона.
На самом деле этот парадокс разрешим. Бесконечное значение тяготения в механике Ньютона получается лишь в том случае, если мы сожмем тело в точку. При этом радиус тела будет, естественно, равен нулю. Шварцшильд же получил выражение для некоторого вполне определенного значения радиуса гравитирующего тела, когда тяготение становится бесконечным. Здесь уже, а именно при значении радиуса тела Rg, теряет смысл понятие скорости убегания.
Если бы мы пользовались здесь теорией Ньютона, мы должны были бы предположить, что кванты света должны удалиться на некоторое расстояние от звезды с критическим радиусом Rg, прежде чем они начнут обратное движение к звезде. Но на самом деле это не так. Если тело сжато до шварцшильдовского радиуса, свет, и не только свет, а и любое другое материальное тело не может покинуть это тело, не может выйти за пределы этого гравитационного радиуса.
Чтобы получить более наглядное представление о численном значении радиуса Шварцшильда, отметим, что для Земли он равен всего восьми миллиметрам. Другими словами, если бы удалось сжать Землю до размера чуть больше спичечной головки, Земля превратилась бы в объект, который в наше время принято называть черной дырой.
В окрестностях такого объекта происходят поистине удивительные вещи. Пространство-время настолько искажено чудовищным тяготением, что обычная эвклидова геометрия оказывается здесь несправедливой. Параллельные прямые могут пересекаться, сумма углов треугольника не равна двум прямым, мы переходим в область новой неэвклидовой геометрии. Более того, наблюдая окрестности черной дыры, мы видим, как начинают замедляться все процессы.
В окрестностях такого объекта само время, казалось бы, вечная и неизменная философская и физическая категория, начинает течь по-другому, замедляется. Заметим — и это очень важно, — что течение времени будет изменяться лишь для внешнего наблюдателя. С часами человека, который захотел бы посетить внутренность черной дыры, было бы все в порядке, он за конечное (по его часам) время упал бы в центр этого объекта.
Не будем пока обсуждать реальность такого эксперимента, а поясним явление замедления времени следующим примером. Пусть мы с Земли наблюдаем за экспедицией, приближающейся к черной дыре, и пусть эта экспедиция посылает на Землю сигналы через одинаковые промежутки времени. По мере приближения космического корабля к черной дыре принимающие устройства на Земле отметят, что интервалы времени между сигналами начали увеличиваться. Когда экспедиция достигнет гравитационного радиуса, мы уже не сможем принять последнего сигнала. Именно таким образом для внешнего наблюдателя будет проявляться процесс замедления времени. Ну а из-под шварцшильдовского радиуса не может выйти ничто. Как говорится в детской присказке, «что упало, то пропало». Быть может, поэтому поверхность с радиусом, равным радиусу Шварцшильда, окружающая черную дыру, называется горизонтом событий.
Здесь возникает естественный вопрос. Ну хорошо, нам удалось каким-то образом сжать тело до его гравитационного радиуса. Что будет дальше с этим телом? Ведь силы тяготения стали бесконечными. Это так, и именно тяготение должно привести к непрерывному сжатию вещества в точку, в так называемую сингулярность! Если мы только дошли до гравитационного радиуса, то дальше начинается гравитационный коллапс.
Нет сил, которые могли бы препятствовать этому процессу. Коллапсирующий объект будет сжиматься до бесконечной плотности и бесконечно малых размеров. Таким образом, шварцшильдовская черная дыра — это область пространства, радиус которой равен радиусу Шварцшильда. В ее центре находится сингулярность, где вещество сжато до беспредельных плотностей бесконечными силами тяготения.