Выбрать главу

Хотя общий закон для простых чисел нельзя установить, можно по крайней мере, изучать поведение некоторых простых чисел, имеющих особые свойства. Представьте себе, будто мы стоим у двери, через которую постоянно проходят группы людей. Мы знаем, что некоторые из них мужчины, а другие — женщины, но мы не можем найти правило, которое предсказывает, кто следующий появится в дверях.

И вот однажды мы замечаем некоторую особенность: оказывается, мужчины появляются в шляпах, а женщины в очках, с детьми и с зонтиками. Тогда мы пытаемся найти правило для каждой из таких групп: например, что мужчины в шляпах появляются в сто раз чаще, чем женщины, или что за каждым мужчиной обязательно следует женщина. Это позволяет нам найти некую закономерность. И может показаться, что такое правило действительно работает, пока мы не проверим его на трех миллионах человек. Тогда мы воскликнем: «О, почти!» И сформулируем результаты нашего исследования словами, которые часто использовались в истории простых чисел: «Похоже на то, что почти всегда…»

* * *

ОДИНОЧЕСТВО ПРОСТЫХ ЧИСЕЛ

Между двумя соседними простыми числами могут находиться миллионы и миллионы составных чисел или всего лишь одно, ведь это самое короткое расстояние между простыми числами, так как, за исключением чисел 2 и 3, простые числа никогда не следуют друг за другом. Этот факт был использован в виде метафоры в названии книги Паоло Джордано «Одиночество простых чисел». В одной из глав романа эта метафора описана более подробно: «В университете на одной из лекций Маттиа узнал, что среди простых чисел есть особенные. Математики называют их парными, или числами-близнецами. Это пары простых чисел, которые стоят рядом, то есть почти рядом, потому что между ними всегда оказывается другое число, которое мешает им по-настоящему соприкоснуться. Это, например, числа 11 и 13, 17 и 19, 41 и 43. Маттиа думал, что они с Аличе — вот такие простые числа-близнецы, одинокие и потерянные, вместе, но недостаточно близкие, чтобы по-настоящему соприкоснуться друг с другом».

* * *

Действительно, некоторые группы простых чисел удалось описать (в общей сложности несколько десятков), и это позволило добиться определенного прогресса.

Мы остановимся на некоторых необычных парах простых чисел, имеющих свойства, которые помогут нам лучше представить математические трудности, связанные с этим непредсказуемым множеством.

Два простых числа не могут идти друг за другом, так как каждое простое число является нечетным. Следовательно, между двумя из них должно быть четное число, которое не является простым. Таким образом, два простых числа всегда разделены по крайней мере одним числом. Исключение составляют числа 2 и 3, так как 2 является единственным четным простым числом.

В первой сотне натуральных чисел мы можем найти следующие пары чисел, отличающихся на две единицы:

(3, 3), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (39, 61) и (71, 73).

Такие простые числа называются «числами-близнецами» или просто «парными».

Парные числа могут быть описаны выражением (р, р + 2), где р — простое число. Ниже мы приводим список всех парных чисел из первой тысячи:

(3, 5), (5, 7), (11, 13), (17, 19), (29,31),

(41, 43), (59, 61), (71, 73), (101, 103), (107, 109),

(137, 139), (149, 151), (179, 181), (191, 193), (197, 199),

(227, 229), (239, 241), (269, 271), (281, 283), (311, 313),

(347, 349), (419, 421), (431, 433), (461, 463), (521, 523),

(369, 571), (599, 601), (617, 619), (641, 643), (659, 661),

(809, 811), (821, 823), (827, 829), (857, 859), (881, 883).

Мы знаем, что простые числа-близнецы по мере увеличения встречаются в ряду натуральных чисел все реже. Однако компьютерные вычисления показывают, что парные числа продолжают встречаться даже среди необыкновенно больших чисел.

А так как существует бесконечное количество простых чисел, можно выдвинуть гипотезу о существовании бесконечного множества чисел-близнецов, но это еще никому не удалось доказать.

Еще одна замечательная группа простых чисел, которая встречается в первой сотне натурального ряда, содержит три числа: 3, 5 и 7. Они могут быть записаны как (р, р + 2, р + 4), где р — простое число. Эта группа простых чисел состоит из так называемых «троек». На самом деле нет никакой необходимости давать им специальное название, так как существует только одна такая тройка. Это доказанный результат. К счастью, этот вопрос решен, в противном случае эта группа могла бы породить еще несколько недоказанных гипотез.

Самыми большими известными числами-близнецами (открытыми в 2009 г.) являются числа 65 516 468 355 х 2333333—1 и 65 516 468 355 х 2333333 + 1, каждое из которых состоит из 100 355 цифр!