Царство растений также делится на «правшей» и «левшей». Например, хмель и все бобовые вьются влево (против часовой стрелки), а вьюнки предпочитают противоположное направление. В отличие от животных, большинство растений — «левши».
Еще в первой половине XIX века крупный французский физик и химик Жан Батист Био, изучая поляризацию света кристаллами кварца, установил наличие «правых» и «левых» молекул.
Луи Пастер правильно подметил определенные отклонения, диссимметричность живого, отличающегося от холодного порядка симметрии неживого мира. Он писал: «Я на пороге тайны, и покров, ее скрывающий, становится все тоньше и тоньше…» А чуть позже, в 1874 году, независимо друг от друга, француз Жозеф Ле Бель и голландец Якоб Вант-Гофф установили, что «родоначальник» органического мира — атом углерода во всех своих соединениях располагается в центре тетраэдральной структуры и соединяется химическими связями с четырьмя другими атомами, находящимися на вершинах тетраэдра. (Между прочим, всем знакомые бумажные пакеты для молока имеют тетраэдральную форму.)
Но ведь неспроста углерод так активен; здесь проявляется строгая объективная необходимость установления определенных химических связей. Его атом имеет всего четыре электрона на внешней оболочке, хотя там достаточно места для восьми. Поэтому у него есть «четыре пустых места», которые могут быть заполнены электронами с внешних оболочек четырех других атомов. Получается диссимметричная, то есть несовместимая со своим зеркальным изображением, структура.
Много позже было установлено, что именно несколько углеродистых диссимметричных химических соединений, словно мощный штамп с определенной формой, сумели «отпечатать» в стадии первичного «бульона» определенную асимметрию почти всем молекулам ныне известных живых существ. «Бурный» заполнитель клетки — цитоплазма тоже диссимметрична. И это, конечно, не игра случая. Расчеты показывают, что при полной симметрии левых и правых соединений обмен веществ протекает в 4 раза медленнее.
А вот еще характерное проявление природных закономерностей в данном случае колебательных химических реакций, изучение которых, видимо, также приближает нас к познанию процессов самоорганизации материи. Внимание к ним мировой науки вызвано работами советских ученых в последнее десятилетие.
Приведем простейший опыт, обнаруживающий колебания в однородной системе. Если в разбавленной серной кислоте растворить бромат калия, сульфат церия и лимонную кислоту, то обнаруживаются периодические колебания концентрации ионов церия. Внешне это выражается в том, что раствор из желтого становится бесцветным, затем снова желтым, снова бесцветным и так далее.
Впоследствии, также советскими учеными, были подобраны растворы, которые колеблются не только во времени, но и в пространстве, вызывая определенные чередующиеся колебания пространственной структуры. В одном из опытов это выглядит так. В слое раствора периодически возникают цветные волны, а вокруг особых точек образуются кольца. При столкновении два таких кольца, в отличие от обычных волн на воде, не проходят друг сквозь друга, а взаимно уничтожаются. В данном случае действует своеобразная комбинация двух процессов — молекулярная диффузия и химическая реакция. Первый, чисто физический процесс «передвигает» молекулы из области высокой концентрации в область низкой. А во втором случае изменение концентрации компонентов раствора осуществляется через кинетику химической реакции.
Проще говоря, несколько прояснился механизм периодических реакций в развитии временной и пространственной организации материи. Установлено также, что этот тип реакции обязан своим существованием притоку энергии. Солнечные лучи, в конечном итоге, обеспечивают возникновение и протекание периодических химических реакций. Возникающие при этом явления равнозначны происходящим при организации некоторых одноклеточных организмов. Огромное количество подобных реакций за миллиарды лет, видимо, должно было породить структуры, являющиеся исходным материалом для простейших проявлений жизни.
Но давайте возвратимся к нашей основной теме — возникновению жизни.