Выбрать главу

Среди наиболее поэтичных аспектов эволюции науки - период созревания идей. Не существует естественного закона, гарантирующего, что озарения появляются только тогда, когда их можно реализовать на практике, и история изобилует искрами вдохновения, появляющимися за годы, десятилетия или даже столетия до своего часа. Что действительно вдохновляет, так это стремление этих первых мыслителей отказаться от своих открытий; каким бы непрактичным ни казался путь вперед и какими бы маловероятными ни были перспективы экспериментального успеха, великими учеными движет врожденная жажда исследования, которая процветает даже в самых неблагоприятных обстоятельствах. На протяжении десятилетий именно такой была природа машинного обучения.

История машинного обучения - это, пожалуй, самая малоизвестная половина истории ИИ, остающаяся относительно нишевой, даже несмотря на то, что одно из первых признаний в ее адрес прозвучало из уст самого Алана Тьюринга. В работе 1950 года под названием "Вычислительные машины и интеллект" Тьюринг кратко противопоставил "ИИ на основе правил", в котором с нуля создается полноценный агент, способный к разумному поведению, и машинное обучение, в котором такому агенту позволяется развиваться самостоятельно, спросив: "Вместо того чтобы пытаться создать программу, имитирующую разум взрослого человека, почему бы не попытаться создать программу, имитирующую разум ребенка?" Действительно, с момента своего появления машинное обучение в той или иной степени черпало вдохновение в человеческом познании, в немалой степени благодаря современному развитию таких областей, как нейронауки.

Смутное функциональное представление о мозге существовало еще в XIX веке, но только в XX нейронаука начала формироваться в том виде, в котором мы знаем ее сегодня. Однако даже тогда состояние наших знаний было примитивным. Подобно первым астрономам, пытавшимся понять смысл небесных траекторий, нанесенных на карту неба, ученые тех дней мало что знали о мозге, кроме того, что они видели - потоки электрических импульсов и химических выбросов, пульсирующих в слоях влажной, таинственно сложенной ткани.

Однако если в периоды такой непрозрачности, когда мир кажется практически закрытым для научного поиска, и есть какая-то положительная сторона, то любопытные среди нас становятся наиболее изобретательными. Гипотезы рождаются практически из ничего. Даже незначительные достижения могут стать преобразующими. А последующий эффект снежного кома может быть головокружительным. В середине двадцатого века нейронаука стояла на пороге определения своих фундаментальных принципов - основы, на которой можно было бы строить истинное понимание, один слой за другим. Это была эпоха, не похожая на рассвет современной физики, когда первые намеки на фундаментальную природу физического мира - частицы и силы, которые будут служить строительными блоками для всего, что мы видим, - произвели революцию в нашем понимании природы.

Большой шаг вперед был сделан в 1943 году, когда исследователи Уоррен С. Маккалох и Уолтер Питтс опубликовали новое исследование фундаментальной единицы мозга - нейрона, которое упростило биологию до почти математической сущности. Ключом к их пониманию была абстракция; отбросив электрохимические причуды реального мозга, они свели нейрон к сравнительно простому обмену сигналами. Это был чисто транзакционный анализ - что входит, что выходит и как они соотносятся друг с другом, - и его последствия были очень глубокими. В отличие от любой другой части тела или любой другой известной на сегодняшний день природной структуры, мозг оказался уникально приспособлен для обработки информации.

В каком-то смысле это был нейронаучный эквивалент расщепления атома, выявивший фундаментальную закономерность, которая с удивительным постоянством повторяется во всем мозге: распределяя сложное поведение по большой сети простых элементов, связи между которыми могут меняться со временем, мы можем выполнять практически безграничные задачи, постоянно обучаясь новым, даже на поздних этапах жизни.

Сложность человеческого мозга превосходит сложность всего остального в известной нам Вселенной, но это почти не отражается на элегантности его конструкции. В отличие от того, что находится под капотом автомобиля или в мобильном телефоне , мозг не представляет собой сборку четко разграниченных компонентов - по крайней мере, не в той форме, которую любой человеческий дизайнер счел бы интуитивной. Вместо этого мы видим паутину из почти 100 миллиардов нейронов - крошечных, тонко сфокусированных единиц электрохимической передачи - соединяющихся друг с другом в огромные сети. И хотя поведение нейронов во всем мозге определяется схожими концепциями - по крайней мере, на уровне модели Маккаллоха и Питтса, - расположение и местоположение сетей, которые они образуют, может способствовать решению таких разнообразных задач, как зрение, слух, ходьба и даже абстрактное мышление. Более того, структура этих сетей почти полностью изучается или, по крайней мере, совершенствуется в течение длительного времени после первоначального формирования мозга в утробе матери. Именно поэтому, хотя наше серое вещество может казаться анатомически неразличимым, наши личности, навыки и воспоминания уникальны.