Выбрать главу

Я не мог не отметить, что в очередной раз мощь больших данных была продемонстрирована в полной мере. При всей своей тонкости эта работа была бы просто невозможна без такого гигантского хранилища фотографий, как ImageNet. Он не просто предоставил исходные данные, необходимые для изучения вселенной иерархических концепций, но - что, вероятно, еще важнее - его масштаб и онтологическая организация позволили обнаружить эти концептуальные отношения. Никому не нужно было указывать модели, как перейти с более высокого уровня детализации на более низкий; не нужно было составлять новый список связей или путей, по которым нужно следовать. ImageNet была настолько всеобъемлющей, что все, что нужно было модели, уже было в ней. Просто потребовалась новая тактика, чтобы использовать ее.

Техника "хеджирования" Джиа и Джона - это применение того типа мышления, который меня больше всего вдохновляет. Несмотря на элегантность и интуитивность - даже простоту, если разобраться, - для ее разработки потребовалась настоящая проницательность. Искусная и в то же время точная, она стала ярким примером того, как развивается компьютерное зрение.

Следующая презентация была посвящена более обширному, неординарному вопросу: что нас ждет, если мы двинемся в противоположном направлении и углубимся в ветви? Что сделают наши алгоритмы с более тонким и сложным миром, чем тот, для понимания которого они были созданы?

Джон встал рядом, чтобы ответить. Мягко воспитанный житель Огайо, который, казалось, чувствовал себя как дома в футболке и шортах-карго, он разделял спокойную манеру поведения Цзя, но выражал ее более причудливым образом; например, он быстро стал известен своим увлечением красными пандами и постоянно держал распечатку с изображением этого животного над монитором своего рабочего места. Но он не был назойливым и, как лучшие исследователи в моей лаборатории, твердо отстаивал свое мнение, когда чувствовал необходимость заявить о себе.

Щелчок - и на экране появилось разделенное изображение. На одной стороне была фотография автомобиля, а на другой - его эквивалент, созданный конструкторами с помощью компьютерного проектирования (CAD). Затем второе изображение накладывалось на первое, и цифровые красные линии обрисовывали контуры решетки радиатора, окон и кузовных панелей реального автомобиля, выделяя те особенности, которые классификатор должен был распознать, чтобы определить точную модель.

"Машины?" - спросил кто-то.

"О, просто подождите", - ответил Джон со знающей ухмылкой.

Он не шутил. Это был наш первый взгляд на тему, которая оказалась гораздо серьезнее, чем мы думали.

Я всегда считал, что истинный вклад ImageNet заключается в его двойственной природе. Его гигантский масштаб был мощным благодаря онтологической иерархии, которая его организовывала, а его онтология была мощной, потому что она была такой большой и всеобъемлющей, охватывая такой разнообразный спектр категорий. Ни одно из этих достоинств не было бы достаточным само по себе. Но, как и сам размер, такое понятие, как "категория", является относительным. Как показала техника хеджирования, обоснованные категориальные ответы могут быть найдены на разных уровнях глубины, в зависимости от задаваемого вопроса. Чем глубже уровень, тем ближе друг к другу сползают понятия, разделенные все меньшим количеством деталей. Вещь. Живая вещь. Растение. Дерево. Клен. Acer pseudoplatanus.

Однако ImageNet оказался не таким уж образцом обширности и детализации, каким казался. Хотя некоторые категории были исключительно тонкими - деревья особенно хороший пример, - другие оставались набором удобно различающихся идей, которые все еще были грубыми по своему охвату, отделенные друг от друга широкими пробелами концептуальной дифференциации. Они гарантируют, что во многих областях работа наших классификаторов никогда не будет слишком сложной.

Автомобили - один из многих примеров темы, которая практически стирает эти пробелы, и послеобеденный краш-курс, проведенный Джиа и Джоном, показал нам, насколько лабиринтной она может быть. Например, нам может показаться очевидным, что на фотографии изображена Toyota (хотя, конечно, большинство из нас были совершенно не готовы к разговору об автомобилях). То, что это Toyota Yaris, тоже можно было понять после небольшого изучения. Но была ли это Toyota Yaris 2008 года или Toyota Yaris 2009 года? Внезапно вопрос стал намного сложнее. Был ли это Toyota Yaris 2008 года в цвете "пылающий синий перламутр" или Toyota Yaris 2008 года в цвете "голубой перламутр"? В том году предлагались оба варианта, и оба были... синими. Это была базовая модель 2008 Toyota Yaris цвета "синий жемчуг" или спортивный лифтбек 2008 Toyota Yaris цвета "синий жемчуг"? Удивительно, но на этом вопросы не закончились. И все это для того, чтобы разобраться в одном варианте одной модели одного производителя. И это только автомобили.