Я говорю сегодня об этом ещё и потому, что сам впоследствии побывал в шкуре шеф-пилота, нёс это бремя девять последних лет моей небесной жизни. Я сознавал, насколько мне доверяли и главные конструкторы, и генеральные, но понимал и другое: если во мне не будет такого «ограничителя», то однажды это может привести к неприятным последствиям.
23. ПОМПАЖИ МОИ, ПОМПАЖИ…
Одной из серьёзных проблем, связанных с доведением МиГ-23, были помпажи силовой двигательной установки. Двигатель Хачатурова, созданный для «двадцать третьей» машины, к сожалению, не обладал большими запасами устойчивости. Но для того времени силовая установка была достаточно хороша, несмотря на то что сделана она была по технологии третьего поколения. Её следующая модификация позволила довести мощность двигателя до 12,5 тонн, то есть увеличить его тягу на 30 процентов, при этом уменьшив расходы топлива на 10 процентов. Это говорило о высоком качестве модернизации, которую провели наши КБ. Но минусы всё же оставались. Особенно это касалось малого запаса устойчивости, в частности на больших углах атаки. На МиГ-23 были боковые заборники. При определённых углах скольжения возникал срыв потока во входной канал и происходил помпаж воздухозаборника. За ним следовал помпаж двигателя, причём лавинообразный. Температура газов за секунду иногда возрастала от 150 до 250 градусов, и лётчик практически не мог справиться с ситуацией. На этих режимах мы сразу же, не глядя, останавливали двигатель, а потом уже занимались поисками выхода из положения. Много проблем было и со стрельбами.
В конце концов сделали противопомпажную систему, которая называлась СПП и имела два датчика: пульсаций воздушного потока, который срабатывал по перепаду давления, и канала высокой температуры. По этим датчикам СПП ограничивала подачу топлива и, следовательно, обороты и температуру газовой турбины. Иногда эта система выводила самолёт из помпажа, но, как правило, если возмущение было достаточно мощным, двигатель всё равно нужно было останавливать.
Труднее было при работе на малых высотах. Дефицит времени не позволял лётчику останавливать двигатель и запускать его снова. Строевому лётчику сделать это вообще было затруднительно, поскольку работа была нештатной. Ещё одна проблема возникала на сверхзвуке. Запас работы воздушного канала на входе тоже был весьма ограниченным, и при возмущении самолёта как по углу атаки, так и по углу скольжения, не говоря уже о работе РУДом двигателя, сразу возникали пульсации воздушного потока, которые приводили к помпажу заборника, а затем и двигателя. Если на дозвуке помпажи воздухозаборника и двигателя не приводили к криминальным последствиям с точки зрения устойчивости и управляемости, то на сверхзвуке, на махе более 2,15 и приборной скорости свыше 1250 км/час, срыв воздушного потока приводил к несимметричному помпажу воздухозаборника, что вело к большим углам скольжения. Самолёт попадал в мощное инерционное вращение вокруг своей оси в поперечном канале, с большими углами скольжения.
Надо сказать, что на махе более 2,15 самолёт имел уже пониженные запасы устойчивости, и этих возмущений хватало для того, чтобы машина попадала в область критических скоростей. Когда мы изучали границы устойчивости на большом махе и приборной скорости, то поняли, что нужно делать так называемый запирульник. То есть клапан, который не позволял на определённом махе (в частности, махе 1,7) при любой работе РУДом убирать обороты ниже 97 процентов. Иными словами, двигатель работал всё время на максимальном режиме, независимо от положения РУДа. И во-вторых, мы провели много мероприятий по входному каналу, вплоть до того, что убрали из зоны потока датчики, которые могли влиять на устойчивое протекание воздушного потока на вход двигателя. Иными словами, всё, что могло вызвать турбулизацию и искривление воздушного потока на входе двигателя, мы постарались исключить.