Выбрать главу

D + Т [4]He+ n + Энергия (1)

D + D [3]He + n + Энергия (2), или

D + D T + H + Энергия

Процесс (1) протекает в дейтериево-тритиевой плазме при температурах свыше 40 миллионов градусов, в то время как реакция (2) для своего поджигания требует температуры около 300 миллионов градусов. Следовательно, все не так просто, как представляли себе в 20-х годах Панет и Петерс. Кроме того, недостаточно получить 40 или 300 миллионов градусов, нужно, чтобы при этих температурах плазма была удержана в стабильном состоянии какое-то минимальное время -- около 1 с. Далее, для начала синтеза совершенно необходимо определенное число частиц. Эти условия устанавливаются так называемым критерием Лоусона: произведение времени удержания плазмы на плотность частичек для реакции D с Т при рабочей температуре в 100 миллионов градусов должно иметь значение 10[14] с/см[3]. Что это означает? При температуре в 100 миллионов градусов 10[14] реакционноспособных ядер атомов на кубический сантиметр должны быть удержаны в течение, по крайней мере, одной секунды. Если это удастся, то термоядерный реактор начнет работать.

При таких высоких требованиях экспериментальные трудности неизмеримо возрастают. Само по себе проблемой является получение солнечных температур в лабораторных условиях. Правда, в настоящее время можно достичь 100 миллионов градусов, но лишь на доли секунды. Неразрешенными остаются прочие задачи: стабильное удержание плазмы при высокой плотности частиц. При температурах в несколько миллионов градусов частицы являются сверхбыстрыми. В доли секунды плазма растекается и снова охлаждается. Ни один земной материал не может существовать при этих температурах и удержать горячую плазму. В Солнечной системе это удается лишь Солнцу в силу его большой массы и размеров: гравитация удерживает солнечную плазму в космическом вакууме. Из-за проблемы материала вопрос об удержании плазмы был заранее, казалось бы, обречен на провал. К счастью, удалось найти изящное решение: плазму можно удержать мощными магнитными полями.

Как обстоит дело с сырьем для будущих термоядерных реакторов? Этот вопрос следует поставить с самого начала. Дейтерий в виде тяжелой воды находится в Мировом океане практически в неограниченном количестве, правда при "разбавлении" 1 : 6000. Если удастся провести D,D-синтез, то не будет вообще никаких забот об исходном сырье, можно будет буквально "сжигать море": 1 л обычной воды с ее естественным содержанием дейтерия дает столько же энергии, сколько 300 л бензина. 1 г чистого дейтерия выделяет при синтезе 30 000 кВт энергии.

Несмотря на эти заманчивые цифры, полагают, что термоядерный D,D-реактор будет иметь шанс на осуществление лишь в далеком будущем. Непреодолимым препятствием является ныне температура плазмы в 300 миллионов градусов. А вот эксперименты по термоядерному синтезу с дейтерием и тритием могут быть проведены при более "доступных" температурах. Поэтому все усилия концентрируются исключительно на последнем способе синтеза. Однако трития, наиболее тяжелого изотопа водорода, в природе практически нет. Его можно получить только искусственно в атомном реакторе, а в будущем, быть может, в термоядерном реакторе. Исходным веществом является изотоп лития [6]Li, который содержится в природном литии, к сожалению, только в количестве 7,4 %. Он превращается в тритий при бомбардировке нейтронами:

[6]Li + n T + [4]He

На практике в качестве горючего намереваются использовать дейтерид лития (LiD), причем в термоядерном реакторе параллельно будут протекать синтез трития и термоядерный синтез. Но хватит ли лития на Земле? Ответом является условное "да". Природные запасы для атомных и термоядерных реакторов -- уран, торий или литий -- встречаются приблизительно в одинаковых количествах. В то же время тритий вызывает осложнения, поскольку этот радиоактивный газ легко диффундирует и может проникнуть из реактора во внешнюю среду. Кроме того, радиоактивность может возникать в самих термоядерных реакторах: их металлические части, которые приходится время от времени сменять, становятся радиоактивными за счет нейтронов, выделяющихся при синтезе.

Первоначальное воодушевление в вопросе исследования термоядерного синтеза, которое охватило ученых со времени Женевской конференции 1955 года, вскоре сменилось некоторым спадом. Правда, через год И. В. Курчатов в английском центре атомных исследований, в Харуэлле, доложил о новых советских экспериментах с дейтериевой плазмой с температурой в миллион градусов. Однако быстрых успехов не достигли ни в СССР, ни в Великобритании, ни в США. Американцы в шутку назвали свою установку ядерного синтеза 1957 года perhapsotron. В вольном переводе это означает: "установка, работающая по принципу: то ли будет, то ли нет".

На конференции по физике плазмы и контролируемому термоядерному синтезу в сентябре 1961 года в Инсбруке один из ведущих специалистов, советский физик Л. А. Арцимович, обратился ко всем участникам с сердечной речью. Наше первоначальное предположение, сказал он, что двери в обетованную страну сверхвысоких температур откроются при первом сильном напоре физиков, оказалось столь же необоснованным, как надежда грешника попасть в рай, не пройдя через чистилище. Однако едва ли можно сомневаться в том, что проблема контролируемого термоядерного синтеза будет разрешена. Мы лишь не знаем, сколько еще нам придется пребывать в чистилище.

"Пребывание в чистилище", по-видимому, закончилось в 1968 году. Н. Г. Басов, один из изобретателей лазера, в руководимом им Физическом институте АН СССР в Москве испытал новый вариант и обнаружил: лазерный луч, сфокусированный на горючем из LiD, запускает реакции термоядерного синтеза. Для этого вовсе не нужны столь высокие температуры. Достаточно сжать шарики LiD ударными волнами, например мощными лазерными импульсами, направленными со всех сторон на шарик ядерного горючего. Тогда за долю секунды, которой достаточно для запуска процесса ядерного синтеза, плотность горючего многократно возрастает по сравнению с исходной величиной.

В 1969 году французские ученые успешно испытали этот метод на замороженном дейтерии. Когда они направили на дейтериевый лед узкий пучок лучей лазера мощностью в 4 ГВт, они смогли обнаружить, что около 100 атомов вступили в реакции синтеза за один "выстрел" лазера. Являлось ли это успешным началом?

В 1972 году ученые США приподняли завесу молчания над аналогичными экспериментами. Они заполняли дейтерием и тритием микробаллончики -крошечные полые стеклянные шарики, которых на 1 кг нужно 2 миллиона штук,-и с помощью лазерных импульсов вызывали в них реакции термоядерного синтеза. Военные круги США думали сначала, что таким путем, с помощью одних только лучей лазера, они смогут поджигать водородные бомбы -- без урановой бомбы. Однако расчеты показали, что для этого потребовались бы лазеры в тысячи или десятки тысяч раз более мощные, чем те, которыми располагали. Уже нынешние мощные лазерные установки занимают большую площадь, каких же размеров должны быть лазеры для Н-бомб, столь привлекающие футурологов?

Пример тунгусского метеорита показывает, что поджиг термоядерной бомбы может произойти и "совершенно естественным путем". 30 июня 1908 года в сибирской тайге, в районе Подкаменной Тунгуски, произошла "катастрофа века". Слепящий огненный шар со свистом опустился на Землю и взорвался со страшной силой. Даже на расстоянии 300 км из окон повылетали стекла. В Иркутске, Ташкенте, Потсдаме и в ряде других мест зарегистрированы были сейсмические волны, которые несколько раз обошли земной шар. В течение недели в Европе стояли "белые ночи", явившиеся следствием взрыва. В Петербурге и Лондоне прохожие могли ночью на улице читать газету. Что произошло? Наткнулся ли на Землю большой метеорит? Когда, годы спустя, проникли к месту взрыва, оказалось, что лес в окружности 40 км уничтожен, а вокруг -- следы больших разрушений. Поразительно, что до сего времени так и не нашли ни малейших остатков метеорита!

С тех пор в ходу было много объяснений, часто фантастических: это был гигантский снежный шар из Космоса, разрушенный космический корабль, гигантская стая мошек или же обломок антиматерии из другой Галактики, который полностью превратился в излучение при столкновении с "нашей" материей. Некоторые поговаривали об атомном взрыве.