Выбрать главу

Эта временная устойчивость к заболеваниям, ядам и особенно к опасной радиации исключительно важна для будущих длительных космических полетов. Если принять во внимание вероятность того, что космическому кораблю придется проходить через зоны опасных космических излучений, станет ясно, какое значение имеет обеспечение защиты космонавтов от ионизирующей радиации.

Кроме того, дальние космические полеты будут осуществляться при скоростях, близких к скорости света. Это выдвигает со своей стороны перед космической биологией новые проблемы. При подобных полетах живые организмы будут подвергаться длительному влиянию повышенных ускорений. Следовательно, ученым необходимо заблаговременно выяснить, смогут ли космонавты безболезненно вынести подобное испытание.

В этом отношении интерес представляют опыты, проведенные на животных, о которых сообщил советский ученый Н. Тимофеев. Было установлено, что их устойчивость к перегрузкам (ускорениям) зависит от интенсивности обмена веществ. Например, при охлаждении крыс до температуры 28–22 °C животные в 2 раза легче переносили ускорение, превышающее земное в 30 раз. А когда животные находились в состоянии глубокой гипотермии при температуре тела от 5 до 8 °C, их жизнедеятельность восстанавливалась даже после пятиминутного воздействия ускорением, превышающим земное в 70–80 раз. В этом случае кровь становилась в 5–6 раз тяжелее ртути. Если такое же ускорение (перегрузка) было бы получено не на центрифуге (как это происходило в условиях опыта), а в условиях космического полета, то всего за 5 мин корабль развил бы вторую космическую скорость и стал бы спутником Солнца.

Во время проведения другого опыта крысы были возвращены к жизни после того, как их в состоянии глубокой гипотермии продержали в течение 20 мин в условиях вакуума, соответствующего вакууму, на высоте 18–20 км над уровнем моря, где все животные погибли бы уже в первые же секунды. Советские ученые считают, что сохранение жизни при таких значительных перегрузках и при таком разреженном воздухе не является крайним пределом.

Но возможно ли, чтобы в будущем космонавты были доведены до состояния, близкого к анабиозу или гибернации? На этот вопрос с точки зрения науки дан положительный ответ[31]. Вспомним широкое применение гипотермии в медицине. Почти все хирургические клиники в мире применяют этот метод. При сложных сердечно-сосудистых, мозговых и глазных операциях, а также в тех случаях, когда пациенты не переносят фармакологических наркозов, хирурги используют заимствованный у природы патент — гипотермию. При гипотермии осторожно, но быстро охлаждают весь организм (или его часть), при этом резко понижается обмен веществ, значительно замедляется движение крови, а чувствительность исчезает полностью. Это позволяет хирургам проводить свою работу, не опасаясь непредвиденных осложнений.

Но продолжительность даже самой сложной операции исчисляется несколькими часами. Возникает вопрос: возможно ли держать человека в таком состоянии несколько суток или недель? В этом отношении представляют интерес уже упомянутые опыты американских ученых Фея и Смита, которые они провели с лечебной целью над больными раком. С биологической точки зрения важнейшей является сама возможность держать человека в течение 40 суток в состоянии гибернации без каких-либо повреждений, а также понижать температуру его тела до 29–27,7 °C.

Почему же не применить эти методы в космической биологии и медицине?

Сейчас ученые обсуждают и такую проблему: как определить самую целесообразную при космических полетах степень анабиотического состояния, в которую следует привести космонавта? В этом отношении они различают две степени: первая — гибернация, при которой налицо частичный анабиоз с сохранением дыхания и сердечной деятельности, хотя они очень замедленны, а также понижение обменных процессов и температуры тела до 26–28 °C, и вторая — гипотермия, представляющая собой глубокий анабиоз, при которой температура тела понижается до 2–6 °C. При второй степени любое понижение температуры тела на 1 °C сокращает потребность организма в кислороде и обмен веществ в среднем на 5 %. Расчеты ученых показали, что гибернация сохраняет 35–40 % жизненно необходимых запасов организма, а глубокая гипотермия — почти 100 %. Следовательно, вторая степень анабиоза практически решает многие проблемы, стоящие перед космической биологией в связи с будущими дальними межпланетными полетами.

вернуться

31

Ряд видных ученых (например Н. И. Калабухов) скептически относится к возможности применения гибернации и анабиоза для обеспечения жизни космонавтов во время длительных полетов. Указывается, что способность впадать в спячку представляет собой сложное биологическое приспособление. Одна из основных задач, стоящих перед организмом при впадании в спячку, — поддержание нормального баланса между различными процессами обмена веществ, главным образом энергетическими. Такая способность была выработана зимоспящими животными за многовековую эволюцию, и маловероятной представляется возможность смоделировать ее искусственным путем. Что же касается анабиоза, необходимо иметь в виду, что разные органы и ткани сложного организма по-разному реагируют на внешние воздействия, особенно выходящие за пределы привычных для данного организма изменений среды. Поэтому при таких крайних воздействиях, каким является перевод организма в состояние анабиоза, может нарушиться согласованность функций клеток, тканей и органов, что приведет к губительным для организма последствиям.).