Выбрать главу

Теперь мы можем понять строение молекулы воды. Электроны водородных атомов попадают в эти две дырки, атомы водорода служат затычками. Поэтому линии, соединяющие центр атома кислорода с водородными атомами, должны были бы составлять угол 90°. Положительные заряды протонов водородных атомов слегка отталкивают друг друга, что увеличивает этот угол до 108° (рис. 29, б). Это типичная связь типа «затычка и дыра».

Другим интересным примером атома, образующего молекулы, служит атом азота. Он имеет 7 электронов, из которых 4 составляют компактную сферическую конфигурацию вокруг ядра; остальные 3 электрона образуют конфигурации с тремя выступами в трех взаимно перпендикулярных направлениях, например: вверх, вперед и вбок (рис. 30, а).

Рис. 30. Атом азота (а) и молекула аммиака (б). В атоме азота мы имеем три электронных выступа, направленных вдоль стрелок под прямыми углами друг к другу. В молекуле аммиака каждый электронный выступ азота сливается с электроном водорода и образует связь типа «электронные близнецы». Густо заштрихованный треугольник — ядро азота; маленькие черные кружки — ядра водорода.

Эта картина позволяет легко понять строение важной молекулы аммиака NH3, в которой три водородных атома дают три связи типа «электронных близнецов», по одной с каждым выступом. Электроны водородных атомов сливаются с электронами выступов, и получается структура, изображенная на рис. 30, б, где ядра водорода сидят на кончиках выступов азота.

Атом углерода особенно приспособлен к образованию молекул. Он имеет шесть электронов, расположенных следующим образом: два электрона находятся близко от ядра и образуют маленькую округлую конфигурацию, остальные четыре могут располагаться симметричным образом, причем каждый дает радиальный выступ, направленный от центра; концы этих выступов расположены по углам правильного тетраэдра (рис. 31, а).

Рис. 31. Атом углерода с четырьмя электронными выступами, направленными по углам правильного тетраэдра (а), молекула метана СН4 (б) и ее схематическое представление (в). Каждый электронный выступ углеродного атома сливается с электроном водорода и образует связь типа «электронные близнецы». Темный квадрат — ядро углерода, маленькие кружки — ядра водорода. Направления связей «близнецы» показаны на (в) отрезками прямых.

Полученная картина позволяет нам понять расположение атомов в молекуле метана СН4, состоящей из одного атома углерода и четырех атомов водорода. Метан является главной составляющей светильного газа. Электроны водородных атомов сливаются с четырьмя выступами в связи типа «близнецы», образуя структуру с ядром углерода в центре и четырьмя протонами по углам тетраэдра (рис. 31, б).

Другая важная молекула, в которую входит углерод, — это двуокись углерода, состоящая из одного атома углерода и двух атомов кислорода. Здесь все четыре выступа слегка изогнуты; два входят в качестве «затычек» в один атом кислорода, остальные два — в другой. В результате получается вытянутая структура из одного углеродного атома и двух кислородных по бокам (рис. 32).

Рис. 32. Молекула двуокиси углерода СO2. Четыре выступа углерода «затыкают» дырки в кислородных атомах. На схеме связи типа «дыра и затычка» показаны волнистыми линиями.

Углеродный атом со своими четырьмя выступами может давать нескончаемый ряд молекул. Это объясняет, почему на Земле так широко распространены соединения углерода и почему они играют столь важную роль в живой материи. Рассмотрим некоторые соединения углерода. Простейшее из них — метан (рис. 33) с одним водородом на каждом выступе.

Рис. 33. Схематические изображения молекул углеводородов. Квадратики — атомы углерода, маленькие кружки— атомы водорода, прямые соединительные линии — связи типа «электронные близнецы».

Можно построить и молекулу из двух атомов углерода и шести атомов водорода. Здесь все связи типа «близнецы». Эта молекула называется этаном. Тот же принцип построения можно продолжить (см. рис. 33), и мы получим ряд молекул, называемых углеводородами: пропан с тремя атомами углерода, бутан с четырьмя и т. д. Эта структура, подобная цепи, может иметь любую длину. Короткие молекулы — это газы, более длинные — жидкости и очень длинные — твердые тела. Они служат горючим в виде газа, нефти или парафина, и мы увидим далее, почему они здесь хороши. Углеводородные цепи очень важны и для нашего питания, если они оканчиваются характерной группировкой атомов, называемой карбоксильной группой (рис. 34).