Если во время движения атомов водорода под воздействием возмущений мерности микропространства ядро какого-либо из атомов водорода «захватит» один или два «лишних» нейтрона, то, при возвращении таких изменённых атомов к оптимальному для водорода уровню мерности они «выпадают» из диапазона устойчивости физически плотного вещества.
Рис. 3.3.7
[Практически все атомы имеют радиоактивные изотопы. Радиоактивные изотопы водорода — дейтерий и тритий — имеют в своих ядрах на один или два нейтрона больше, чем у собственно водорода. Их атомный вес на одну или две атомные единицы отличается от атомного веса водорода и, тем не менее, они являются радиоактивными. В то время, как атомы других элементов, имеющих точно такой и даже больший атомный вес, не проявляют признаков радиоактивности и только их изотопы, имеющие «лишний» нейтрон, проявляют себя, как радиоактивные элементы. Атомы очень многих элементов в своих устойчивых состояниях имеют в своих ядрах нейтроны, порой десятки, и, тем не менее, не становятся радиоактивными. Почему появление ещё одного нейтрона, в дополнение к уже присутствующим, делает подобный атом радиоактивным? Всё дело в том, что лишний нейтрон не меняет оптимального уровня мерности атома в целом, а изменяет степень влияния ядра этого атома, в пределах самого ядра. Поэтому атом с «лишним» нейтроном продолжает вести себя, как и атом без оного и, в результате, становиться радиоактивным.]
В результате чего, становятся неустойчивыми и распадаются.
Рис. 3.3.8
[Радиоактивный изотоп водорода — дейтерий D — вне зависимости от того, где произошёл его синтез, устремляется к оптимальному уровню собственной мерности обычного водорода H и в результате этого, оказывается в близких к критическим для физически плотного вещества условиях. Пространство постоянно насыщено микроскопическими колебаниями мерности пространства на разных уровнях собственной мерности, в том числе и на уровне оптимальной мерности водорода. В основном, эти микроскопические колебания мерности (фотоны) возникают при переходах электронов с более удалённых от ядра орбит на более близкие к ядру у тех же самых атомов водорода, что «плавают» на уровне своей оптимальной мерности. При поглощении (наложении на атом) этих фотонов атомами дейтерия D, уровень собственной мерности увеличивается и в результате, такой атом оказывается за пределами диапазона устойчивости физически плотного вещества.
1. Нижний уровень мерности физически плотной сферы (Ф.П.С).
2. Верхний уровень мерности Ф.П.С]
И всё сразу становится на свои места, исчезают противоречия, вместо абсурда открывается великолепная картина микромира в своей первозданной красоте.
Осталось выяснить только маленькое «но»: почему тяжёлый водород возвращается к тому же оптимальному уровню собственной мерности, что и «простой» водород, в результате чего становится неустойчивым и распадается?!
Давайте чуть глубже «заглянем» в ядро атома водорода. Ядро «просто» водорода имеет один нуклон — протон — положительно заряженную частицу, заряд которой нейтрализуется отрицательным зарядом электрона, что обеспечивает устойчивость атома. Вспомним, что ядро содержит практически всю массу атома, в нём содержится физически плотное вещество, представляющее собой гибридную форму материи, возникшую в результате слияния семи первичных материй. Гибридные формы влияют на мерность микропространства с обратным знаком. Вследствие чего, изначальная деформация микропространства нейтрализуется, и восстанавливается баланс — устойчивое состояние пространства. Ядро атома водорода, при своём рождении, создаёт свою микроскопическую деформацию мерности окружающего микропространства такой же природы, что и изначальная. И, если изначальную деформацию считать отрицательной, то физически плотное вещество создаёт положительную деформацию микропространства. В зависимости от того, на каком расстоянии от ядра возникает вызванная протоном деформация микропространства, появляется или атом водорода, или нейтрон.
Дело в том, что нейтрон — электрически нейтральная частица, качественно образована протоном и электроном, расстояние между которыми — на порядок меньше размера атома водорода. Поэтому, столь близко расположенные положительная и отрицательная зоны деформации микропространства полностью компенсируют друг друга, и возникает нейтральная зона микропространства, которая не вступает во взаимодействие ни с какими другими, изолированная от всего и вся. У атома водорода «электронная» зона деформации микропространства несколько отдалена от протона, в результате чего её влияние на протон ядра водорода значительно меньше, в силу чего сила взаимодействия между ними — значительно меньше чем внутри нейтрона, в результате чего, появляются свойства, характерные для атомов. Таким образом, чётко вырисовались отличия между атомом водорода и нейтроном и это различие — только в расстоянии между двумя зонами деформации микропространства разных знаков. Именно расстояние между ними так значительно влияет на их свойства, что мы говорим, в одном случае, об атоме водорода, а в другом — о нейтроне. И опять, пространственные характеристики приводят к качественному скачку проявления материи.
А теперь, вспомним, что «электронная» зона деформации недостаточна для полного слияния семи форм материи и, что условия для слияния возникают только временно, во время прохождения фронта волны через «электронную» зону деформации микропространства. В результате этого, физически плотная материя «рождается», чтобы в следующее мгновение умереть, и так повторяется бесконечное число раз. Во время своей «кратковременной жизни» электрон проявляет свойства вещества, другими словами, влияет на пространство точно так же, как и ядро атома водорода — протон. В момент его распада — «смерти» — подобное влияние исчезает. И, как следствие, атом водорода постоянно совершает микроскопические колебания мерности окружающего микропространства, относительно уровня устойчивого состояния равновесия. В результате периодической материализации электрона, «электронная» минусовая зона деформации микропространства то исчезнет, то вновь появится. Таким образом, различие между атомом водорода и нейтроном определяются только их пространственной структурой, которая оказывает влияние только на их химические свойства, в то время, как природа их влияния на микропространство — практически тождественна. Поэтому, когда атом водорода «захватывает» нейтрон, атом тяжёлого водорода стремится к тому же оптимальному уровню собственной мерности, что и «простой» водород, в то время, как совокупное влияние ядра на окружающее микропространство у тяжёлого водорода в два или три раза (в случае дейтерия или трития, соответственно) больше, чем у простого водорода. И, как следствие, тяжёлый водород выпадает за пределы устойчивости физически плотного вещества. Его ядра оказываются в зоне микропространства, где не может существовать материя, возникшая при слиянии семи первичных материй, происходит распад ядра на материи, его образующие. Что и соответствует радиоактивному распаду.
Может возникнуть вопрос: почему атом водорода, как и все остальные атомы, должен стремиться к оптимальному уровню собственной мерности?! И вообще, что стоит за этим понятием? Очередная комбинация слов, не имеющая физического смысла и чёткого объяснения?! Давайте разберёмся с этим понятием.